期刊文献+

基于改进蚁群算法的云计算用户任务调度算法 被引量:22

Improved ant colony algorithm based cloud computing user task scheduling algorithm
下载PDF
导出
摘要 近年来,随着电力信息化的深入发展,越来越多的电力应用和任务在云端部署。由于云资源和电力应用的动态异构性,实现资源划分和任务调度是云计算系统中的一个挑战性问题。电力应用需要实现快速响应、实现最小完工时间,而调度程序又要考虑各个云计算节点的负载问题,保证云计算的可靠性。提出了一种基于改进蚁群算法的任务调度算法,解决虚拟机中的任务调度问题。通过对标准蚁群算法的改进,在最小化整体完工时间的同时实现任务调度时间的减小和负载均衡。研究结果表明,该算法有效缩短了任务调度时间,并实现云节点负载均衡,为电力云计算的优化提供技术依据。 In recent years, with the development of power information, more and more power applications and tasks are deployed in the cloud. Because of the dynamic heterogeneity of cloud resources and power applications, it is a challenge in the cloud computing system to realize resource division and task scheduling. Power applications need to be able to achieve a rapid response and minimum completion time, and schedulers should consider the load of each cloud computing node to ensure the reliability of cloud computing. A task scheduling algorithm based on the algorithm of improving an ant colony was proposed to solve the problem of task scheduling in virtual machines. Through the improvement of the standard ant colony algorithm, the task scheduling time was reduced and load balancing was realized while minimizing the overall completion time. The results show that the algorithm can shorten the task scheduling time and realize the load balancing of cloud nodes, which provides technical basis for the optimization of power cloud computing.
作者 罗斯宁 王化龙 李弘宇 彭蔚 LUO Sining;WANG Hualong;LI Hongyu;PENG Wei(China Energy Engineering Group Guangxi Electric Power Design Institute Co.,Ltd.,Nanning 530004.China)
出处 《电信科学》 2020年第2期95-100,共6页 Telecommunications Science
关键词 云计算 任务调度 负载均衡 cloud computing task scheduling load balancing
  • 相关文献

参考文献3

二级参考文献26

  • 1卿松,罗忠敏,钟劲松,张建业.云计算数据中心技术及在电力行业的应用研究[J].新疆电力技术,2012(3):40-43. 被引量:3
  • 2Wikipedia. Cloud computing [ EB/OL ]. [ 2012 - 05 - 21 ]. http:// de. wikiped ia. org,/ wiki/Cloud_Computing. 被引量:1
  • 3Arfeen M A, Pawlikowski K, Willig A. A Framework for Resource Al- location Strategies in Cloud Computing Environment [ J ]. Computer Software and Applications Conference Workshops (COMPSACW), 2011 IEEE 35th AnnuM,2011:261 - 266. 被引量:1
  • 4Zhao Chenhong, Zhang Shanshan, Liu Qingfeng, et al. Independent Tasks Scheduling Based on Genetic Algorithm in Cloud Computing[ C ] //Proc IEEE 5th International Conference on Wireless Communica- tions, Networking and Mobile Computing WiCom'09, Beijing,2009:1 -4. 被引量:1
  • 5Guo Lizheng, Zhao Shuguang, Shen Shigen, et al. Task Scheduling Op- timization in Cloud Computing Based on Heuristic Algorithm [ J ]. Jour- nal of Networks. 2012,7 ( 3 ) : 547 - 553. 被引量:1
  • 6Li Jianfeng, Peng Jian, Cao Xiaoyang, et al. A Task Scheduling Algo- rithm Based on Improved Ant Colony Optimization in Cloud Computing Environment[ J ]. Energy Procedia, 2011 ( 13 ) :6833 - 6840. 被引量:1
  • 7Kennedy J, Spears W. Matching Algorithms to Problems : an Experi- mental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator [ C ]//Proc IEEE International Confer- ence on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998 : 78 - 83. 被引量:1
  • 8Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[ C ]//Proceedings of the 6th Symposium on Operating System Design and Implementation. New York : ACM, 2004 : 137 - 150. 被引量:1
  • 9Kennedy J, Eberhart R C. Particleswarm ptimization [ C ]//Proc IEEE International Conference on Neural Networks, IV. Piscataway, N J: IEEE Service Center, 1995 : 1942 - 1948. 被引量:1
  • 10Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agent [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26 (1) :29-41. 被引量:1

共引文献43

同被引文献247

引证文献22

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部