期刊文献+

带裂纹矩形板自由振动解析解 被引量:1

Analytical study of free vibration for cracked rectangular plate
下载PDF
导出
摘要 选取带有补充项的双重正弦傅里叶级数作为振型函数通解,来解析研究带裂纹矩形板的自由振动特性。先将带裂纹矩形板分割成若干小矩形板,利用各小矩形板的边界条件,并结合振型函数中待定常数的物理意义,简化得到各小矩形板的振型函数,再结合各板的控制方程、未使用的边界条件、公共边协调条件及本文提出公共自由角点的协调条件,建立求解频率的代数方程组,然后将其转化为广义特征值问题来求解带裂纹矩形板的无量纲频率;最后选取具体参数进行计算并与文献结果对比,吻合良好,证明了本文采用的研究方法以及所提出公共角点协调条件的正确性和合理性。由于该振型函数能满足矩形板的任意边界约束,且其中的待定常数具有明确的物理意义,所以可使矩形板问题的求解统一化、简单化和规律化。 A double sine Fourier series with supplementary functions is adopted to investigate a cracked rectangular plate.It is decomposed into several sub-domains and a simplified function for each sub-domain is derived.For each specific function,the boundary conditions and the physical meanings for constants in the mode functions are considered.The equation system,which contains the governing equations,the remaining boundary conditions,compatibility conditions for shared boundaries and the proposed equilibrium condition for shared free corners in this paper,is converted to a generalized eigenvalue problem to compute the non-dimensional frequencies.An example is calculated and the results in this paper are close to published data,which verifies the correctness of derivaition.Moreover,the validity of the proposed equilibrium condition for shared free corners is proved.The adopted function,whose canstant contain certain physical meanings,could conveniently investigates layered rectangular plates with aribitrary boundary conditions.Therefore,the method in this paper could unify the solution and simplify the approach for the study of rectangular plates.
作者 王春玲 赵鲁珂 王涵 李东波 WANG Chun-ling;ZHAO Lu-ke;WANG Han;LI Dong-bo(School of Science,Xi’an University of Architecture&Technology,Xi’an 710055,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2019年第6期757-762,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51878547)资助项目
关键词 带裂纹矩形板 双重正弦级数 协调条件 自由振动 解析研究 cracked rectangular plate double sine Fourier series equilibrium condition free vibration analytical study
  • 相关文献

参考文献7

二级参考文献20

共引文献23

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部