摘要
为了解决传统文克尔地基未考虑非线性的缺陷,通过分段线性逼近的方法来处理实际地基曲线.在此基础上,利用伽辽金法解答了非线性文克尔地基上四边自由矩形板的问题,该方法具有收敛快,误差小的优点.同时计算表明:在使用非线性地基模型后,其结果与线性地基模型的解答有一定的差异,这对实际运用具有一定的参考价值.
In order to solve the defect that the traditional Winkler does not considere the nonlin-ear, we used piecewise linear approximation method to deal with the actual curve of foundation. On this basis, we used the Galerkin method to solve the problem of the bending of rectangle thin plates with four free edges on nonlinear Winkler foundation with faster convergence and high pre cision. The calculation result obtained from nonlinear foundation model is different from that from linear foundation model. It is valuable in applications.
出处
《山东理工大学学报(自然科学版)》
CAS
2014年第2期75-78,共4页
Journal of Shandong University of Technology:Natural Science Edition
关键词
非线性弹性地基
矩形薄板
伽辽金法
nonlinear elastic foundation
rectangle thin plate Galerkin method.