期刊文献+

小开河引黄灌区土壤盐渍化定量遥感反演 被引量:10

Quantitative Remote Sensing Inversion of Soil Salinization in Xiaokaihe Yellow River Irrigation District
下载PDF
导出
摘要 近年来黄河下游土地次生盐渍化呈现反复和逐渐加剧的态势,对农业生产和生态安全造成危害。以黄河三角洲小开河引黄灌区为研究区,基于野外实地调查的土壤盐分含量以及Landsat8 OLI多光谱影像,分析土壤样品的光谱曲线特征,利用诊断指数法选取诊断指数较大的波段反射率数据作为自变量,土样盐分数据为因变量,分别采用多元线性回归模型和BP神经网络模型构建土壤含盐量反演模型。结果表明:土壤盐渍化程度越高,影像光谱反射率越低,且在近红外波段反射率最高;BP神经网络模型的反演精度优于传统的多元线性回归模型,其R2为0.9808,RMSE为1.0595,平均相对误差为15.4%,拟合精度较高,能够为灌区盐渍化治理提供基础依据。 In recent years,secondary salinization of the lower reaches of the Yellow River has been repeated and gradually intensified,causing damage to agricultural production and ecological security.This paper takes the Xiaokaihe Irrigation District of the Yellow River Delta as the study area.Based on the soil salt content and Landsat8 OLI multi-spectral imagery,the spectral curve characteristics of soil samples are analyzed.According to the diagnostic index method,the band reflectance data with larger diagnostic index is an independent variable and the salt salinity is the dependent variable,and the soil salt inversion model is constructed by multiple linear regression model and BP neural network model.The results show that the higher the degree of soil salinization,the lower the spectral reflectance of the image and the highest reflectance is in the near-infrared.The inversion accuracy of BP neural network model is better than that of the traditional multiple linear regression model.It's R2 is 0.9808 and RMSE is 1.0595,the average relative error is 15.4%,and the fitting accuracy is high,which can provide a basis for the salinization treatment in the irrigation district.
作者 刘恩 王军涛 常步辉 王东琦 LIU En;WANG Jun-tao;CHANG Bu-hui;WANG Dong-qi(Yellow River Institute of Hydraulic Research,Zhengzhou 450045,China;Hydrology and Water Resources College,Hohai University,Nanjing 210098,China)
出处 《中国农村水利水电》 北大核心 2019年第12期20-24,共5页 China Rural Water and Hydropower
基金 黄河水利科学研究院基本科研业务费专项(HKY-JBYW-2017-22)
关键词 小开河引黄灌区 landsat8 定量遥感反演 BP神经网络 Yellow River Delta landsat8 quantitative remote sensing inversion the BP neural network model
  • 相关文献

参考文献8

二级参考文献100

共引文献344

同被引文献146

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部