期刊文献+

基于无人机多光谱的大豆旗叶光合作用量子产量反演方法 被引量:5

Inversing photosynthesis quantum yield of the soybean flag leaf using a UAV-carrying multispectral camera
下载PDF
导出
摘要 大豆旗叶的量子产量(Quantum Yield,QY)对于评估光合效率非常重要,利用无人机多光谱数据对QY值进行高通量反演,能够无损、高效的监测光合作用过程中的生理化学变化。该研究的目的是探究植被指数与QY值相关性,并基于高相关性的植被指数反演QY值,同时分析了多植被指数与单植被指数构建反演模型的准确性。结果表明,与传统反演算法支持向量回归(Support Vector Regression,SVR)相比,基于集成学习的自适应提升(Adaptive Boost,AdaBoost)算法提高了模型的准确性,测试集决定系数(coefficient of determination,R^(2))为0.982,均方根误差(Root Mean Square Error,RMSE)为0.089,相对分析误差(Residual Predictive Deviation,RPD)为7.29。研究表明基于多植被指数、利用AdaBoost算法可以构建更为有效的无人机多光谱大豆光合有效量子产量反演模型,为评估高通量光合效率提供了一种先进的方法。 The photosynthetic capacity of a crop plays a decisive role in its yield.The quantum yield(QY)of soybean flag leaf is also very important to assess photosynthetic efficiency.High-throughput QY inversion can rapidly,non-destructively,and efficiently monitor the physicochemical changes in the soybean flag leaf during photosynthesis using a UAV multispectral.The objective of this study was to investigate the correlation between the vegetation indices and QY,and then to invert the QY values using the highly correlated vegetation indices.The inversion models were also constructed for high accuracy with the multiple versus single vegetation indices.Eight vegetation indices were calculated,including the Normalized Difference Vegetation Index(NDVI),green NDVI(GNDVI),Enhanced Vegetation Index(EVI),Leaf Chlorophyll Index(LCI),Soil Adjusted Vegetation Index(SAVI),green SAVI(GSAVI),Optimized SAVI(OSAVI),and Normalized Difference Red Edge(NDRE).The high throughput of the spectral collection was used in the five bands of the soybean canopy.Pearson correlation coefficients were also utilized to determine the correlations between the single vegetation indices and QY values of the soybean flag leaf.Six vegetation indices with high correlations were then selected as NDVI,GNVDI,LCI,SAVI,OSAVI,and NDRE.The single-index inversion models of the six highly correlated vegetation indices were constructed using five models,including the Support Vector Regression(SVR),Partial Least Squares Regression(PLSR),Random Forest(RF),Adaptive Boosting(AdaBoost),and Gradient Boosted Decision Tree(GBDT).The simulation was then evaluated using three evaluation indexes,including the coefficient of determination(R^(2)),root-mean-square deviation(RMSE),and relative percent difference(RPD).Five models were evaluated to select the vegetation indices with the better inversion for the QY of the soybean flag leaf.The single vegetation index modelling showed that the NDVI,GNDVI,LCI,and NDRE performed better inversion for the QY of the soybean flag leaf.A compre
作者 张通 金秀 饶元 罗庆 李绍稳 王良龙 张筱丹 Zhang Tong;Jin Xiu;Rao Yuan;Luo Qing;Li Shaowen;Wang Lianglong;Zhang Xiaodan(School of Information&Computer,Anhui Agricultural University,Hefei 230036,China;Ministry of Agriculture and Rural Affairs Key Laboratory of Agricultural Sensors Hefei 230036,China;Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment,Hefei 230036,China)
出处 《农业工程学报》 EI CAS CSCD 北大核心 2022年第13期150-157,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 安徽省自然科学基金项目(2008085MF203) 安徽省自然科学项目(KZ2019A0212) 安徽省重点研究与开发计划项目(201904a06020056)。
关键词 大豆 无人机多光谱 有效量子产量 植被指数 光合效率 soybean UAV multispectral effective quantum yield vegetation index photosynthetic efficiency
  • 相关文献

参考文献19

二级参考文献353

共引文献366

同被引文献69

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部