期刊文献+

基于视觉系统分层的小目标运动检测 被引量:9

Small target motion detection based on layering of vision system
下载PDF
导出
摘要 为了提升对光学遥感图像中弱小运动目标的检测能力,提出一种基于鹰眼视网膜视觉系统层次结构的运动检测方法。首先,基于鹰眼视网膜的分层特性,结合各层主体细胞的生理结构与功能,构建各层相应的滤波器,抑制背景微位移和杂散噪声;然后,在Reichardt运动检测模型的基础上增加时域高通滤波与ON-OFF双通道滤波来估计目标运动矢量,这样不仅能克服传统Reichardt运动检测器对阶跃边界响应复杂,而且能有效增强运动检测的敏感性;最后利用高级视觉神经系统的分层特点,以空域相似度大小为基准进行多尺度映射与运动矢量显著图融合,构建多尺度处理精细检测运动特征。试验结果表明,本文算法的平均信杂比改善为56.20 dB,正确率为99.71%,综合评价指标F1值为3.63e-02,相较于传统Reichardt模型的F1值提升了27.82%。本文方法较传统运动检测算法不仅能提高复杂背景的干扰抑制性能,而且能显著提升小目标小位移的检测能力。 To improve the detection ability of weak and small moving targets in optical remote sensing images, a motion detection method based on the hierarchical structure of the eagle-eye retinal vision system was proposed. Firstly, based on the stratification characteristics of the eagle-eye retina, combined with the physiological structure and function of the main cells of each layer, corresponding filters of each layer were constructed to suppress the background micro-displacement and spurious noise. Then, based on the Reichardt motion detection model, time domain high-pass filtering and ON-OFF dual-channel filtering were added to estimate the target motion vector, which overcomes the complex response of the traditional Reichardt motion detector to the step boundary and also effectively enhances the sensitivity of motion detection. Finally, using the hierarchical characteristics of the advanced visual nervous system, multi-scale mapping and the motion vector saliency map were combined based on the degree of spatial similarity, and multi-scale processing was used to detect the motion features. The experimental results show that the average signal-to-noise ratio of the proposed algorithm is improved to 56.20 dB, the correct rate is 99.71%, and the comprehensive evaluation index F1 is 3.63e-02, which is 27.82% higher than that of the traditional Reichardt model. Compared with the traditional motion detection algorithm, the proposed method can improve the interference suppression performance of complex background and also enhance the detection ability of a small target and small displacement significantly.
作者 刘晓 崔光照 李正周 熊伟奇 LIU Xiao;CUI Guang-zhao;LI Zheng-zhou;XIONG Wei-qi(College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China;Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2019年第10期2251-2262,共12页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61675036) 重庆基础与前沿研究计划项目(No.CSTC2016JCYJA0193) 中国科学院光束控制重点实验室基金资助项目(No.2017LBC006) 十三五装备预研领域基金资助项目
关键词 遥感图像 运动检测 运动显著图 鹰视觉通路 Reichardt运动检测器 remote sensing image motion detection motion saliency map eagle vision system Reichardt motion detector
  • 相关文献

参考文献6

二级参考文献46

  • 1Chubb C, Sperling G, Drift-Balanced Random Stimuli: A General Basis for Studying Non-Fourier Motion Perception. Journal of the Optical Society of America A: Optics, Image Science and Vision, 1988, 5(11) : 1986 -2007. 被引量:1
  • 2Benton C P, Johnston A, McOwan P W, et al. Computational Mod- eling of Non-Fourier Motion: Further Evidence for a Single Lumi- nance Based Mechanism. Journal of the Optical Society of America A: Optics, Image Science and Vision, 2001,18(9) : 2204 -2208. 被引量:1
  • 3Ashida H, Lingnau A, Wall M B, et al. fMR1 Adaptation Reveals Separate Mechanisms for First-Order and Second-Order Motion. Journal of Neurophysiology, 2007, 97(2) : 1319- 1325. 被引量:1
  • 4anaka E, Noguchi Y, Kakigi R, et al. Human Cortical Response to Various Apparent Motions: A Magnetoencephalographic Study. Neuroscience Research, 2007, 59 (2) : 172 - ! 82. 被引量:1
  • 5Rizzo M, Nawrot M, Sparks J, et al. First and Second Order Motion Perception 'after Focal Human Brain Lesions. Vision Research, 2008, 48(26) : 2682 -2688. 被引量:1
  • 6Vaina L M, Soloviev S. First-Order and Second-Order Motion : Neu- rological Evidence for Neuroanatomically Distinct Systems// Milner D, Heywood C, eds. Progress in Brain Research 144. Amsterdam, Netherlands : Elsevier, 2004 : 197 - 212. 被引量:1
  • 7Lu Zhonglin, Sperling G. The Functional Architecture of Human Visual Motion Perception. Visual Research, 1995, 35 ( 19 ) : 2697 - 2722. 被引量:1
  • 8Lu Zhonglin, Sperling G. Three-Systems Theory of Human Visual Motion Perception: Review and Update. Journal of the Optical Society of America A: Optics, Image Science and Vision, 200!, 18 (9) : 2331 -2370. 被引量:1
  • 9Fleet D J, Langley K. Computational Analysis of Non-Fourier Mo- tion. Vision Research, 1994, 34(22): 3057-3079. 被引量:1
  • 10Mareschai I, Baker C L. Cortical Processing of Second-Order Motion. Visual Neuroscience, 1999, 16(3):527-540. 被引量:1

共引文献55

同被引文献64

引证文献9

二级引证文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部