期刊文献+

基于语义信息和边缘一致性的鲁棒SLAM算法 被引量:12

Robust SLAM Algorithm Based on Semantic Information and Edge Consistency
原文传递
导出
摘要 为解决动态环境中视觉定位精度下降、鲁棒性不足的问题,并改善构建的环境地图,提出一种基于语义信息和边缘一致性的鲁棒同时定位与地图创建(SLAM)算法.首先使用YOLOv3算法获取环境语义信息,得到初步的图像语义动静态分割.而后使用基于图像中边缘的距离变换误差和光度误差的一致性评估,进一步对图像的动静态区域进行细分,并利用连通区域分析和漏洞修补算法修正动态区域.使用图像非动态区域的特征点进行特征匹配,利用非线性优化算法最小化特征点的重投影误差,得到优化的相机位姿.利用特征点共视性和动静态区域面积进行绘图关键帧的选取,从而构建不包含动态物体信息的静态环境地图.公开数据集中高动态环境的实验表明,本文算法能够准确地区分图像中的动静态信息,完成动态环境下的精确定位与地图构建任务.并且本文算法在纯静态环境下不存在定位精度下降的情况. To handle the performance degradation and the insufficient robustness of visual localization in dynamic environments,and to improve the created environment map,a robust simultaneous localization and mapping(SLAM)algorithm based on the semantic information and the edge consistency is proposed.Firstly,the semantic information of the environment is acquired by YOLOv3 algorithm,and the semantically dynamic-static segmentations of the image are obtained preliminarily.The consistency evaluation is conducted based on the distance transform errors and photometric errors of edges in the images to refine the dynamic-static area.Moreover,the dynamic regions are corrected by the connected component analysis and the loophole mending algorithm.The feature points in the non-dynamic regions are matched and the camera poses are optimized by minimizing the reprojection errors of feature points by the nonlinear optimization algorithm.The mapping keyframes are selected based on the covisibility of feature points and the areas of the dynamic-static regions.And the static environment map is created without the information of the dynamic objects.The experiment on the highly dynamic scenes in the public datasets show that the proposed method can distinguish the dynamic-static information accurately,and perform the precise localization and mapping in dynamic environments.Besides,the degradation of the positioning accuracy does not exist in the proposed method in the static environment.
作者 姚二亮 张合新 宋海涛 张国良 YAO Erliang;ZHANG Hexin;SONG Haitao;ZHANG Guoliang(Department of Control Engineering,Rocket Force University of Engineering,Xi'an 710025,China;School of Control Engineering,Chengdu University of Information Technology,Chengdu 610225,China)
出处 《机器人》 EI CSCD 北大核心 2019年第6期751-760,共10页 Robot
关键词 同时定位与地图创建 语义信息 动态环境 距离变换 边缘一致性 simultaneous localization and mapping(SLAM) semantic information dynamic environment distance transform edge consistency
  • 相关文献

参考文献2

二级参考文献37

  • 1吴皓,田国会,段朋,薛英花,张海婷.基于RFID技术的大范围未知环境信息表征[J].中南大学学报(自然科学版),2013,44(S1):166-170. 被引量:5
  • 2Vasudevan S, Gachter S, Nguyen V T, et al. Cognitive maps for mobile robots - An object based approach[J]. Robotics and Au- tonomous Systems, 2007, 55(5): 359-371. 被引量:1
  • 3Jebari I, Bazeille S, Battesti E, et al. Multi-sensor semantic map- ping and exploration of indoor environments[C]//IEEE Confer- ence on Technologies for Practical Robot Applications. Piscat- away, USA: IEEE, 2011: 151-156. 被引量:1
  • 4Wu H, Tian G H, Li Y, et al. Spatial semantic hybrid map build- ing and application of mobile service robot[J]. Robotics and Au- tonomous Systems, 2014, 62(6): 923-941. 被引量:1
  • 5Wang E Semantic mapping for domestic service robots[D]. Hefei: University of Science and Technology of China, 2013. 被引量:1
  • 6Zhao W W. Multi-layer semandc map building of mobile robot based on monocular vision[D]. Beijing: Beijing University of Technology, 2014. 被引量:1
  • 7陶重辑.未知环境探测及三维室内语义建图研究[D].无锡:江南大学,2014. 被引量:1
  • 8Tao Z B. Research of unknown environment exploration and indoor 3D semantic mapping[D]. Wuxi: Jiangnan University, 2014. 被引量:1
  • 9Wang G Q. The research of semantic map updates and robot lo- calization based on RFID and laser sensor[D]. Jinan: Shandong University, 2013. 被引量:1
  • 10Wu H, Tian G H, Duan P, et al. Navigation information descrip- tion of large unknown environment based on RFID technolo- gy[J]. Journal of Central South University: Science and Tech- nology, 2013(S1): 166-170. I. 被引量:1

共引文献81

同被引文献78

引证文献12

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部