摘要
为提高全球导航卫星系统GNSS在复杂环境下的定向成功率,将迭代加权的思想与模糊度函数法(AFM)相结合,提出迭代加权模糊度函数法(IWAFW)。基于AFM算法,通过设计新的适应度函数,利用残差计算权重,实现对不同卫星信号权重的自动调节,并结合惯性传感器给出的姿态信息,压缩搜索空间,降低计算量。通过实测试验验证,在复杂环境中,相比于AFM和带基线长度约束的最小二乘模糊度去相关算法(CLAMBDA),该算法能够有效提高模糊度固定成功率。
In order to improve the success rate of attitude determination with global navigation satellite system( GNSS) in complex environments,the iterative weighted ambiguity function method( IWAFM) is proposed,which combines the idea of iterative weighted with the ambiguity function method( AFM). By designing a new fitness function which using the residuals to calculate the weights,the weights of different satellites can be automatically adjusted. The information of inertial sensors is used to shrink the search space of IWAFM,so that the amount of calculation is reduced. The experimental results show that IWAFM can effectively improve the fix rate of ambiguity in the complex environments compared with the AFM and CLAMBDA algorithms.
作者
高迪
何文涛
蔺晓龙
GAO Di;HE Wentao;LIN Xiaolong(University of Chinese Academy of Science,Beijing 100049,China;Institute of Microelectronics of Chinese Academy of Science,Beijing 100029,China)
出处
《测绘通报》
CSCD
北大核心
2019年第11期56-59,125,共5页
Bulletin of Surveying and Mapping
基金
中国第二代卫星导航系统重大专项(GFZX030302020205)
关键词
全球导航卫星系统
卫星定向
模糊度固定
模糊度函数法
迭代加权
GNSS
satellite attitude determination
integer ambiguity resolution
ambiguity function method
iterative weighted