期刊文献+

基于旅游用户数据和评论的推荐系统的设计 被引量:2

Research on Recommendation System Based on Tourism User Data and Comments
下载PDF
导出
摘要 随着国民生活水平的提高,旅游业蓬勃发展,旅游业与互联网的结合促进了在线旅游业的形成,也就是当代所说的"智慧旅游"。用户可以通过互联网了解各种各样的旅游信息,但是,日趋严重的过载旅游数据现象让旅游商们难以准确的挖掘出符合用户兴趣的个性化旅游信息,推荐出一个智慧的旅游路线更是如同大海捞针,而旅游推荐系统是解决这一问题的关键技术。本文基于个性化推荐算法的研究,将用户信息,用户评论,用户行为,用户历史订单,用户未来订单等多项数据作为算法的训练测试集,对功能性需求进行分析,开发了基于用户数据的推荐系统。 With the improvement of the living standards of the people and the booming tourism industry,the combination of tourism and the Internet has promoted the formation of online tourism,which is also known as"smart tourism".Users can learn a variety of travel information through the Internet.However,the increasingly serious phenomenon of overloaded travel data makes it difficult for travellers to accurately mine personalized travel information that suits their interests.It is more like recommending a smart travel route.A needle in a haystack,and a travel recommendation system is the key technology to solve this problem.Based on the research of personalized recommendation algorithm,this paper uses user data,user comments,user behavior,user history orders,user future orders and other data as the training test set of the algorithm,analyzes the functional requirements,and studies the system summary design.
作者 周家昊 李民 ZHOU Jia-hao;LI Min(Kunming University of Science and Technology,College of Mechanical and Electrical Engineering,Kunming,Yunnan 650500,China)
出处 《软件》 2019年第11期174-177,共4页 Software
关键词 旅游数据 推荐算法 数据挖掘 Travel data Recommendation algorithm Data mining
  • 相关文献

参考文献4

二级参考文献18

  • 1张晗,潘正运,金晓燕.智能“旅游电子超市”系统的研究与设计[J].微计算机信息,2005,21(12X):16-19. 被引量:5
  • 2赵相福,欧阳丹彤.可用于诊断产生的计算碰集的新方法[J].吉林大学学报(理学版),2006,44(3):385-390. 被引量:6
  • 3Zhang Mu,Chen Yi. Study on the Recommendation Technology for Tourism Information Service [ C ]//2009 Second International Symposium on Computational Intelligence and Design. Washington DC : [ s. n. ] ,2009:410-415. 被引量:1
  • 4Jannach D,Zanker M, Fuchs M. Constraint-based recommendation in tourism:a multi-perspective case study[ J ]. Journal of Information Technology & Tourism, 2009, 11 (2): 139- 155. 被引量:1
  • 5Felfemig A, Gordea S, Jannach D, et al. A Short Survey of Recommendation Technologies in Travel and Tourism [ J ]. Oesterreichische Gesellschafffuer Artificial Intelligence ,2007, 25(7) :17-22. 被引量:1
  • 6Felfernig A, Burke R D. Constraint-based Recommender Systems:Technologies and Research Issues [ C ]//ACM International Conference on Electronic Commerce ( ICEC ), 2008. Innsbruck ,Austria: [ s. n. ] ,2008 : 1-10. 被引量:1
  • 7Felfernig A, Kiener A. Knowledge-based Interactive Selling of Financial .Services with FSAdvisor [ C ]//Proceedings of the 17th Innovative Applications of Artificial Intelligence Conference (AAAI). USA : AAAI Press, 2005 : 1475 - 1482. 被引量:1
  • 8Felfernig A, Friedrich G ,Jannach D, et al. An Integrated Environment for the Development of Knowledge- Based Recommender Applications [ J ]. International Journal of Electronic Commerce,2006,11 (2) : 11-34. 被引量:1
  • 9Zanker M, Jessenitschnig M, Schmid W. Preference reasoning with soft constraints in constraint-based recommender systems [ J]. Journal Constraints,2010,15 (4) :574-595. 被引量:1
  • 10Felfernig A,Teppan E. Knowledge-based Recommender Technologies for Marketing and Sales [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2007,21 ( 2 ) : 333 -354. 被引量:1

共引文献22

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部