期刊文献+

一种个性化旅游线路推荐算法 被引量:3

An Algorithm of Personalized Travel Package Recommendation
下载PDF
导出
摘要 采用用户-景点-线路三部图来描述用户的行为,通过改进的随机行走算法给用户推荐合适的旅游线路,可以提供准确的旅游线路推荐并有效地解决新的线路难以推荐的问题。通过对景点的聚类,减小了数据稀疏性对推荐带来的影响并避免了过拟合问题。实验结果表明,与传统的方法相比,本文提出的算法具有较好的排序准确度,特别是对稀疏度较高的用户,优势更明显。 In order to recommend the travel package to users,a user-place-itinerary tripartite graph was introduced to describe the behavior of the user,then refined random walk algorithm was elaborated to predict the preference of users.The algorithm could give good recommendation and can also effectively solve the new-item recommendation problem.It also reduced the impact of sparsity and avoids overfitting by clustering of places through interest.Compared with traditional methods,experimental results demonstrate that the proposed algorithm has good sorting accuracy and other more obvious advantages especially for the sparser users.
出处 《网络新媒体技术》 2012年第3期42-48,共7页 Network New Media Technology
基金 863重大项目课题-融合网络业务体系的开发(2011AA01A102) 科技支撑项目课题-支持增强型搜索功能的三屏融合服务运行平台(2011BAH11B04) 中国科学院战略性先导科技专项子课题-未来网络架构研究与边缘设备研制(XDA06010302)
关键词 推荐系统个性化旅游随机行走三部图 Recommender System Personalized Tourism Random Walk Tripartite Graph
  • 相关文献

参考文献2

二级参考文献134

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186 被引量:1
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201 被引量:1
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006 被引量:1
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58 被引量:1
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749 被引量:1
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354 被引量:1
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70 被引量:1
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87 被引量:1
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217 被引量:1
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80 被引量:1

共引文献526

同被引文献25

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部