期刊文献+

基于模糊聚类的大学生网络情感分析研究 被引量:4

Research on College Students’ Network Emotion Analysis Based on Fuzzy Clustering
下载PDF
导出
摘要 正值于青少年时期的大学生很容易受到各种外界因素的影响,导致心理情绪波动较大。特别是进入21世纪以来的大学生大多都是独生子女,通常具有感情色彩丰富、心理较脆弱的特点,如果长期处于一种负面情绪的状态则很有可能会引发一些极端的不良事件,因此维护大学生的心理健康成为高校教师的重点工作。而传统的心理测评往往容易受到主观条件的影响不能准确和及时地反映当前学生的心理问题,本文结合当前互联网大数据时代的特征,提出一种利用模糊聚类算法对大学生在微博等网络社交平台的文本状态进行情感分析的方法,旨在能够及时有效地发现学生的心理健康问题避免不良的影响。 College students who are in adolescence are very susceptible to various external factors, resulting in greater fluctuations in psychological mood. In particular, most of the college students who have entered the new century are only children. They are usually characterized by rich emotions and psychological weakness. If they are in a state of negative emotion for a long time, they are likely to cause some extreme adverse events. Mental health has become a key task for college teachers. However, the traditional psychological assessment is often susceptible to subjective conditions, which can not accurately and timely reflect the current students’ psychological problems. This paper combines the characteristics of the current Internet big data era, and proposes a fuzzy clustering algorithm for college students to socialize on Weibo and other networks. The method of emotional analysis of the textual state of the platform aims to be able to timely and effectively discover the mental health problems of students to avoid adverse effects.
作者 仲伟伟 刘丽萍 汪方正 ZHONG Wei-wei;LIU Li-ping;WANG Fang-zheng(Jiangsu Vocational College of Medicine,Yancheng 224005,China)
出处 《电脑知识与技术》 2019年第10期226-228,233,共4页 Computer Knowledge and Technology
基金 江苏省社会科学基金项目“大数据背景下智慧校园建设的策略与实践研究”(15JYC001)
关键词 模糊理论 聚类算法 大数据 情感分析 人工智能 Fuzzy theory Clustering algorithm Big data Sentiment analysis Artificial intelligence
  • 相关文献

参考文献6

二级参考文献33

  • 1薛振框,李少远.MIMO非线性系统的多模型建模方法[J].电子学报,2005,33(1):52-56. 被引量:18
  • 2雷英杰,王宝树,苗启广.直觉模糊关系及其合成运算[J].系统工程理论与实践,2005,25(2):113-118. 被引量:69
  • 3张洪美,徐泽水,陈琦.直觉模糊集的聚类方法研究[J].控制与决策,2007,22(8):882-888. 被引量:64
  • 4Zhexue Huang,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy Systems,August,1999,7(4):446-452. 被引量:1
  • 5Zhexue Huang.A fast clustering algorithm to cluster very large categorical data sets in data mining[A].Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].USA:ACM Press,1997.1-8. 被引量:1
  • 6Kononenko I.Estimating attributes:Analysis and extensions of Relief[A].Proceedings of the 7th European Conference on Machine Learning[C].Berlin:Springer,1994.171-182. 被引量:1
  • 7Kira K,Rendell L A.A practical approach to feature selection[A].Proceedings of the 9th International Workshop on Machine Leaning[C].San Francisco,CA:Morgan Kaufmann,1992.249-256. 被引量:1
  • 8Duda R O,Hart P E.Pattern classification and scene analysis[M].New York:John Wiley & Sons,1973.89-91. 被引量:1
  • 9Hathaway R J,Bezdek J C.Nerf C-means:Non-Euclidean relation fuzzy clustering[J].Pattern recognition,1994,27(3):429-437. 被引量:1
  • 10Michalski R S,Stepp R E.Automated construction of classifications:Conceptual clustering versus numerical taxonomy[J].IEEE PAMI,1983,5:396-410. 被引量:1

共引文献198

同被引文献40

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部