摘要
目的本研究使用空腹血糖(fasting plasma glucose,FPG),收缩压(systolic blood pressure,SBP)和舒张压(diastolic blood pressure,DBP)描述高血压人群中血压(blood pressure,BP)和血糖的因果关系。方法研究共选取有两次FPG,SBP和DBP测量值的4195名研究对象。采用双向因果关联模型描述BP和FPG的因果关系,并用逐性回归验证。结果共4195例高血压患者,平均年龄(53.67±10.20)岁,平均随访时间为(28.86±3.34)月。双向因果关系模型中,基线SBP影响随访FPG的路径(ρ1=0.034,P=0.009)和基线FPG影响随访SBP的路径(ρ2=0.032,P=0.018)均差异有统计学意义,同时在线性回归中,也存在SBP和FPG相互影响,互为因果的关系(均P<0.05)。结论在高血压患者中血压和血糖之间存在双向关系,即SBP与FPG不分先后,互为因果。
Objective To describe the causal relationship between blood pressure and blood glucose in hypertension by using fasting plasma glucose(FPG),systolic blood pressure(SBP)and diastolic blood pressure(DBP).Methods A total of 4195 hypertension cases with two times measurements of FPG,SBP and DBP were selected for the study.The causal relationship between BP and FPG was described by the cross-lagged panel analysis,and tested by stepwise linear regression model.Results The mean age of 4195 cases was 53.67±10.20 years and the mean follow-up time was 28.86±3.34 months.The path of baseline SBP to follow-up FPG(ρ1=0.034,P=0.009)and the path of baseline FPG to follow-up SBP(ρ2=0.032,P=0.018)were both significant in cross-lagged panel analysis.SBP and FPG interacted as both cause and effect in stepwise linear regression model(P<0.05).Conclusions The causal relationship between BP and FPG is found to be reciprocal in hypertensive individuals.Therefore,SBP and FPG interact as both cause and effect.
作者
郭荣荣
谢艳霞
郑佳
戴玥
王亚丽
郭潇繁
孙国哲
孙兆青
孙英贤
郑黎强
GUO Rong-rong;XIE Yan-xia;ZHENG Jia;DAI Yue;WANG Ya-li;GUO Xiao-fan;SUN Guo-zhe;SUN Zhao-qing;SUN Ying-xian;ZHENG Li-qiang(Department of Clinical Epidemiology,Shengjing Hospital affiliated to China Medical University,Shenyang,Liaoning 110004,China)
出处
《中国预防医学杂志》
CAS
CSCD
2019年第9期769-774,共6页
Chinese Preventive Medicine
基金
国家自然科学基金面上项目(81773510)
国家重点研发计划项目(2017YFC1307600)
辽宁省自然科学基金(20170541048)
关键词
空腹血糖
收缩压
舒张压
高血压患者
前瞻性研究
因果关系
逐步线性回归
Fasting plasma glucose
Systolic blood pressure
Diastolic blood pressure
Hypertensive individuals
Prospective study
Causal relationship
Stepuise linear regression