期刊文献+

基于CRNN的中文手写识别方法研究 被引量:6

Research on Chinese handwriting recognition based on CRNN
下载PDF
导出
摘要 针对基于字符分割的中文手写识别方法存在字符分割准确率影响识别准确率和速度的问题,文中设计了一种基于卷积循环神经网络(Convolutional Recurrent Neural Network,CRNN)的中文手写识别方法,方法将特征提取、序列预测、序列对齐算法集成到同一网络,实现端到端(End-to-End)的训练和识别。模型仅需输入待识别中文手写图像,中文字符免分割,即可输出识别结果,识别的准确率(Accuracy)相较基于结构特征点字符分割识别算法提高了2.29%,同时少了识别的时间。 Aiming at the problem that the character segmentation accuracy of Chinese handwriting recognition method which based on character segmentation has an influence on recognition accuracy and speed,a Chinese handwriting recognition method based on Convolutional Recurrent Neural Network(CRNN)is designed in this paper.Feature extraction,sequence prediction,and sequence alignment algorithms are integrated into the same network for end-to-end training and recognition.The model only needs to input the Chinese handwritten image to be recognized,and the recognition result with non-segmentation can be output.The Accuracy of recognition is 2.29%,which is higher than the character segmentation recognition algorithm based on structural feature points,and the recognition time is reduced.
作者 石鑫 董宝良 王俊丰 SHI Xin;DONG Bao-liang;WANG Jun-feng(North China Institute of Computer Technology,Beijing 100083,China)
出处 《信息技术》 2019年第11期141-144,150,共5页 Information Technology
关键词 中文手写识别 CRNN 端到端 免分割 Chinese handwriting recognition CRNN end-to-end non-segmentation
  • 相关文献

参考文献8

二级参考文献162

  • 1钱跃良,林守勋,刘群,刘洋,刘宏,谢萦.863计划中文信息处理与智能人机接口基础数据库的设计和实现[J].高技术通讯,2005,15(1):107-110. 被引量:4
  • 2Chiang C C and Yu S S. An iterative character segmentation method for irregularly formatted Chinese documents. Proceedings of the Optical Character Recognition and Document Analysis, Taiwan, 1996: 61-67. 被引量:1
  • 3Lu Y and Shridhar M. Character segmentation in handwritten words-an overview. Pattern Recognition, 1996, 29(1): 77-96. 被引量:1
  • 4Arica N and Yarman-Vural F T. An overview of character recognition focused on off-line handwriting. IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2001, 31(2): 216-233. 被引量:1
  • 5Casey R G and Lecolinet E. A survey of methods and strategies in character segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996, 18(7): 690-706. 被引量:1
  • 6Liu C L, Koga M and Fujisawa H. Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1425-1437. 被引量:1
  • 7Tseng L Y and Chuang C T. An efficient knowledge based stroke extraction method for multi-font Chinese characters. Pattern Recognition, 1992, 25(12): 1445-1458. 被引量:1
  • 8Tseng L Y and Chen R C. Seginenting handwritten Chinese characters based on heuristic merging of stroke bounding boxes and dynamic programming. Pattern Recognition Letters, 1998, 19(10): 963-973. 被引量:1
  • 9Fu Q, Ding X Q, and Liu C S, et al. A hiddern Markov model based segmentation and recognition algorithm for Chinese handwritten address character strings. International Conference on Document Analysis and Recognition, Seoul, Korea, 2005: 590-594. 被引量:1
  • 10Duda R O, Hart P E and Stork D G. Pattern Classification. Second Edition, New York, John Wiley & Sons Inc, 2000: 36-45. 被引量:1

共引文献150

同被引文献32

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部