期刊文献+

基于深度学习的场景文字检测与识别 被引量:35

Deep learning for scene text detection and recognition
原文传递
导出
摘要 场景文字检测与识别是一种通用文字识别技术,已成为近年来计算机视觉与文档分析领域的热点研究方向.其被广泛应用于地理定位、车牌识别、无人驾驶等领域.相对于传统的文档文字检测和识别,场景文字在字体、尺度、排布、背景等方面变化更加剧烈,深度学习技术也由于卓越的性能成为该领域的主流方法.本文主要回顾了作者基于深度学习在此领域取得的代表性成果,并对此领域未来研究趋势进行了展望. Scene text detection and recognition is a universal text recognition technology, which has become a hot research topic in the field of computer vision and document analysis in recent years. It is widely applied in geographical positioning, license plate recognition, and driverless applications. Compared to traditional document text detection and recognition, scene text varies more dramatically in font, color, scale, layout, and background.Owing to its excellent performance, deep learning has been widely adopted in this field. In this paper, we mainly review our representative studies based on deep learning in this field and describe the future research trends in this field.
作者 白翔 杨明锟 石葆光 廖明辉 Xiang BAI;Mingkun YANG;Baoguang SHI(Minghui LIAO School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, Chin)
出处 《中国科学:信息科学》 CSCD 北大核心 2018年第5期531-544,共14页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61733007 61222308 61573160) 数字出版技术国家重点实验室开放课题(批准号:F2016001)资助项目
关键词 深度学习 场景文字 文字检测 文字识别 计算机视觉 deep learning scene text text detection text recognition computer vision
  • 相关文献

参考文献1

二级参考文献98

  • 1Tsai S S, Chen H, Chen D, Schroth G, Grzeszczuk R, Girod B. Mobile Yingying ZHU et al. Scene text detection and recognition: recent advances and future trends visual search on printed documents using text and low bit-rate features. In: Proceedings of the 18th IEEE International Conference on Image Processing. 2011, 2601-2604. 被引量:1
  • 2Barber D B, Redding J D, McLain T W, Beard R W, Taylor CN. Vision-based target geo-location using a fixed-wing miniature air vehi?cle. Journal of Intelligent and Robotic Systems, 2006, 47(4): 361-382. 被引量:1
  • 3Kisacanin B, Pavlovic V, Huang T S. Real-time vision for human?computer interaction. Springer Science and Business Media, 2005. 被引量:1
  • 4DeSouza G N, Kak A C. Vision for mobile robot navigation: a sur?vey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(2): 237-267. 被引量:1
  • 5Ham Y K, Kang M S, Chung H K, Park R H, Park G T. Recognition of raised characters for automatic classification of rubber tires. Optical Engineering. 1995, 34(1): 102-109. 被引量:1
  • 6Yao C, Zhang X, Bai X, Liu W, Tu Z. Rotation-invariant features for multi-oriented text detection in natural images. PloS one, 2013, 8(8): e70173. 被引量:1
  • 7Yao C, Bai X, Shi B, Liu W. Strokelets: A learned multi-scale represen?tation for scene text recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 4042-4049. 被引量:1
  • 8Chen X, Yuille A L. Detecting and reading text in natural scenes. In: Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 2. 被引量:1
  • 9Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transform. In: Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2963-2970. 被引量:1
  • 10Neumann L, Matas J. A method for text localization and recognition in real-world images. Lecture Notes in Computer Science, 2011, 6494, 770-783. 被引量:1

共引文献21

同被引文献198

引证文献35

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部