期刊文献+

基于航行数据的船舶油耗优化 被引量:6

Ship Oil Consumption Optimization Based on Sailing Data
原文传递
导出
摘要 以一条丹麦籍客滚轮的实测数据为基础,通过人工神经网络建立案例船的油耗黑箱模型。基于该油耗模型,进一步采用动态规划算法获得规定航线上的最佳航行策略,有效提高案例船的EEOI能效指数,达到减排节能的目标。该项研究所建立的油耗优化系统框架完全以实测航行数据为基础,可直接应用于不同船只,具有较普遍的适用性,对于SEEMP能效管理计划的实施具有重要意义。 Based on the sailing data of the Danish ferry Smyril, a black-box model for the ferry oil consumption is established using artificial neural network. The black-box model is then combined with the dynamic programming method to provide an optimal sailing plan, which could improve the Energy Efficiency Operational Indicator(EEOI) for better energy efficiency and lower carbon emission. The established framework of oil consumption optimization is based on the sailing data which is measured actually and could be applied to any ship directly. It has significant benefits for the effective application of ship energy efficiency management plan(SEEMP).
作者 殷振宇 许劲松 YIN Zhenyu;XU Jinsong(Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《船舶工程》 CSCD 北大核心 2019年第8期100-104,共5页 Ship Engineering
关键词 船舶能效管理计划 黑箱模型 动态规划 油耗优化 ship energy efficiency management plan(SEEMP) black-box model dynamic programming oil consumption optimization
  • 相关文献

参考文献3

  • 1叶睿,许劲松.基于人工神经网络的船舶油耗模型[J].船舶工程,2016,38(3):85-88. 被引量:21
  • 2王旭,王宏,王文辉编著..人工神经元网络原理与应用 第2版[M].沈阳:东北大学出版社,2007:150.
  • 3滕宇编..动态规划原理及应用[M].成都:西南交通大学出版社,2011:179.

二级参考文献9

  • 1Singhal N, Dev AK. SEEMP: Energy Management and the Shipping Industry[C]// Proceedings of 5th International Conference on Technology and Operation of offshore Support Vessels. 2013. 被引量:1
  • 2IMO. Resolution MEPC.213(63), Guidelines for the Development of a Ship Efficiency Management Plan (SEEMP)[S]. 2012. 被引量:1
  • 3IMO. Resolution MEPC.214(63), Guidelines on survey and certification of the Energy Efficiency Design Index(EEDI)[S]. 2012. 被引量:1
  • 4Autere P, Heikkinen A, Kovanen L. Data Presentation and Reporting Techniques for Decision Making[C]// l lth International Conference on Computer and IT Applications in the Maritime Industries, Liege. 2012. 被引量:1
  • 5Journre J M J, Rijke R J, Verleg G J H. Marine Performance Surveillance with a Personal Computer[R]. 1987. 被引量:1
  • 6Petersen J P, Winther O, Jacobsen D J. A Machine- Learning Approach to Predict Main Energy Consumption under Realistic Operational Conditions[J]. Ship Technology Research, 2012, 59(1): 64-72. 被引量:1
  • 7Lindskog P, Ljung L. Tools for Semiphysical Modelling[J]. International Journal of Adaptive Control and Signal Processing, 1995, 9(6): 509-523. 被引量:1
  • 8Petersen J P. Mining of Ship Operation Data for Energy Conservation[D]. Denmark: Technical University of Denmark Informatics and Mathematical Modelling, 2011. 被引量:1
  • 9DTU Cognitive Systems Group. Propulsion Modeling [DB/OL]. http://cogsys.imm.dtu.dk/propulsionmodelling/ data. html, 2011. 被引量:1

共引文献20

同被引文献30

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部