期刊文献+

内河船舶载重状态识别研究 被引量:1

Research on Load State Identification for Inland River Ships
下载PDF
导出
摘要 结合内河载货船舶的特点,研究了船舶载重与船舶燃油消耗、主机功率以及航速之间的关系,分析了内河船舶载重量与船舶航行摩擦阻力之间内在联系。通过对船舶燃油消耗、船舶航速、发动机转速、行驶里程等实时数据进行处理,建立了基于神经网络的内河船舶载重状态识别系统,试验结果表明,该方法可以有效识别行驶中的内河船舶载重状态。 According to the characteristics of inland river ships, this paper studied the relationship between ship load, fuel consumption, engine power and ship speed. Also, it analyzed the proportion of the total load of inland ships on the total resistance of ship navigation. Through real-time data processing on the fuel consumption, ship speed, engine speed and mileage, a load state identification system for inland vessels based on neural network has been established. Experimental results show that this method can effectively identify the load state of the inland ship in driving.
出处 《仪表技术》 2017年第6期38-40,共3页 Instrumentation Technology
关键词 内河船舶 载重 状态识别 inland river ships load state identification
  • 相关文献

参考文献3

二级参考文献14

  • 1樊东亮,霍利民.基于GPRS的农村配网自动化方案设计[J].农机化研究,2012,34(5):208-211. 被引量:6
  • 2张刚,张德民,聂颖.基于GSM/CDMA网络的GPS船舶定位系统[J].重庆邮电学院学报(自然科学版),2005,17(1):65-67. 被引量:8
  • 3夏军星.基于GPS的天津港小型船舶监控系统的研究[J].水运科学研究,2009(1):56-58. 被引量:1
  • 4杨永,杜文龙.5l单片机接收GPS数据的算法与实现[J].嵌入式技术,2008(3):18-21. 被引量:1
  • 5Singhal N, Dev AK. SEEMP: Energy Management and the Shipping Industry[C]// Proceedings of 5th International Conference on Technology and Operation of offshore Support Vessels. 2013. 被引量:1
  • 6IMO. Resolution MEPC.213(63), Guidelines for the Development of a Ship Efficiency Management Plan (SEEMP)[S]. 2012. 被引量:1
  • 7IMO. Resolution MEPC.214(63), Guidelines on survey and certification of the Energy Efficiency Design Index(EEDI)[S]. 2012. 被引量:1
  • 8Autere P, Heikkinen A, Kovanen L. Data Presentation and Reporting Techniques for Decision Making[C]// l lth International Conference on Computer and IT Applications in the Maritime Industries, Liege. 2012. 被引量:1
  • 9Journre J M J, Rijke R J, Verleg G J H. Marine Performance Surveillance with a Personal Computer[R]. 1987. 被引量:1
  • 10Petersen J P, Winther O, Jacobsen D J. A Machine- Learning Approach to Predict Main Energy Consumption under Realistic Operational Conditions[J]. Ship Technology Research, 2012, 59(1): 64-72. 被引量:1

共引文献21

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部