期刊文献+

基于Hubness现象的高维数据混合聚类算法 被引量:3

A hybrid clustering algorithm for high dimensional data based on Hubness phenomenon
下载PDF
导出
摘要 高维数据聚类是聚类分析中的难点。K-hubs聚类算法是在K-means方法基础上,结合高维数据空间的Hubness现象对数据进行聚类。针对K-hubs聚类算法需要随机确定初始聚类中心,不适用于非超球状簇等问题,本文提出了基于多阶段层次聚类和划分聚类的高维数据混合聚类算法。该算法将数据点按其Hub值分为Hub点,Midhub点和Antihub点三类,然后对Hub点和Midhub点分别采用层次聚类,接着进一步采用层次聚类合并簇,最后,对Antihub点利用划分聚类合并到最近的簇。在UCI数据集上的实验结果表明,与其它最新的聚类算法相比,本文提出的算法在高维数据集上得到了较好的聚类结果。 High dimensional data clustering is a difficult task in clustering analysis.Based on K-means algorithm,K-hubs algorithm performs the clustering for the data combining the Hubness phenomenon in high dimensional data space.To tackle the issues such as random selection of initial clustering centers and not being adaptive to nonhyperspherical clusters,this paper proposes a hybrid clustering algorithm for high dimensional data based on multi-stage hierarchical clustering and partition clustering.The data points are classified into three categories including Hub points,Midhub points and Antihub points.Then,we conduct hierarchical clustering for Hub points and Midhub points.Next,the clusters are further merged with hierarchical clustering.Finally,Antihub points are merged into the nearest clusters with partition clustering.The experimental results on UCI data sets show that the proposed algorithm can achieve better clustering results on the high dimensional data set compared with the state of the art method.
作者 王妍 马燕 黄慧 李顺宝 张玉萍 WANG Yan;MA Yan;HUANG Hui;LI Shunbao;ZHANG Yuping(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)
出处 《电视技术》 2019年第6期17-23,共7页 Video Engineering
基金 国家自然科学基金(61373004,61501297)资助项目
关键词 高维数据 聚类 Hubness现象 层次聚类 K-MEANS算法 high dimensional data clustering Hubness phenomenon hierarchical clustering K-means algorithm
  • 相关文献

参考文献3

二级参考文献15

  • 1刘远超,王晓龙,刘秉权.一种改进的k-means文档聚类初值选择算法[J].高技术通讯,2006,16(1):11-15. 被引量:23
  • 2Damminda A,Saman K H.Dynamic self-organizing maps with controlled growth for knowleage discovery[J].IEEE Transactions on Neural Networks,2000,11(3):601-614. 被引量:1
  • 3Rauber A,Merkl D.Tie growing hierarchical self-organizing map:exploratory analysis of high-dimensional data[J].IEEE Transactions on Neural Neural Networks,2002,13(6):1331-1341. 被引量:1
  • 4Xu Y D,Xu Z M,et al.Using multiple features and stalistical model to calculate text units similarity[A].Proceedings of 2006 International Conference on Machine Learning and Cybernetics[C].China:IEEE Press,2005.3834-3839. 被引量:1
  • 5Gonenc E,Ilyas C.Using lexical chains for keyword extraction[J].Informtion Processing and Management,2007,43(6):1705-1714. 被引量:1
  • 6Kohonen T,Kaski S,et al.Self organization of a massive document collection[J].IEEE Transactions on Neural Networks,2000,11(3):574-585. 被引量:1
  • 7Shahpurkar S S,Sundareshan M K.Cornparison of self-organizing map with k-means hierarchical clustering for bioinformatics applications[A].International Joint Conference on Neural Networks[C].Hungary;IEEE Press,2004.1221-1226. 被引量:1
  • 8Hinneburg A, Aggarwal C C, Keim D A. What is the nearest neighbor in high dimensional spaces[C]//26^th VLDB Conference. 2000 : 506-515. 被引量:1
  • 9Kriegel H-P, Kroger P, Zimek A. Clustering high-dimensional data: a Survey on subspace clustering, pattern-based clustering, and correlation clustering[J]. ACM Transactions on Knowledge Discovery from Data,2009,3(1) : 1-58. 被引量:1
  • 10盛骤 谢式千 潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989.. 被引量:209

共引文献16

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部