期刊文献+

基于快速模糊C均值和邻域空间信息的脑部MR图像分割 被引量:1

Brain MR Image Segmentation Based on Fast Fuzzy C-Means with Neighborhood Spatial Information
下载PDF
导出
摘要 目的提出一种改进的模糊C均值聚类算法,并将其应用于脑部MR图像分割。方法首先,采用最大距离测度选取FCM初始聚类中心;然后,采用硬分类方法更新聚类中心和空间邻域信息构建隶属度函数,最后完成图像各区域分类。结果采用人工合成图像和临床实例脑部MR图像进行仿真实验,结果显示基于空间信息的SFCM/SFFCM算法所得图像噪声水平低于传统的FCM/FFCM算法。定量分析显示基于SFCM1,1/SFFCM1,1的分类评价指标模糊位置系数Vpc(0.944)和位置信息熵Vpe(0.043)均最优,SFFCM1,1程序耗时较标准FCM降低了37.2%~82.9%,迭代次数减少5~20次。结论本研究提出的SFFCM分割算法收敛速度更快,精确度更高,是一种可行的脑部MR图像分割算法。 Objective This paper proposed an improved fuzzy C-mean clustering(FCM)algorithm which was used for the segmentation of brain MR image.Methods Firstly,the maximum distance measure was used to select the initial clustering center of FCM.Then,the membership function was constructed by updating the clustering center and spatial neighborhood information with hard classification method.Finally,the image regions were classified.Results Artificial synthetic images and clinical brain MR images were used for experiments.The results showed that the image noise level of SFCM/SFFCM algorithm based on spatial information was lower than that of traditional FCM/FFCM algorithm.Quantitative analysis showed that the fuzzy partition coefficient Vpc(0.944)and partition entropy Vpe(0.043)of classification evaluation index based on SFCM1,1/SFFCM1,1 were optimal.Compared with standard FCM,program of SFFCM1,1 consumed 37.2%~82.9%less time and reduced the number of iterations by 5~20 times.Conclusion The SFFCM segmentation algorithm proposed in this study has faster convergence speed and higher accuracy,which is a feasible brain MR image segmentation algorithm.
作者 任彤 REN Tong(Department of Radiology,Nanjing Chest Hospital,Nanjing Jiangsu 210029,China)
出处 《中国医疗设备》 2019年第9期93-95,109,共4页 China Medical Devices
关键词 模糊C均值 空间邻域信息 脑部磁共振 图像分割 fuzzy C-mean spatial neighborhood information brain MR image segmentation
  • 相关文献

参考文献6

二级参考文献62

  • 1R. C. Gonzalez, R. E. Woods. Digital Image Processing, 2nd ed., Upper Saddle River, USA: Prentice Hall, 2002. 被引量:1
  • 2B. Sowmya, B. Sheelarani. Colour image segmentation us- ing soft computing techniques. International Journal of Soft Computing Applications, no. 4, pp. 69-80, 2009. 被引量:1
  • 3N. Senthilkumaran, R. Rajesh. Edge detection techniques for image segmentation-A survey of soft computing ap- proaches. International Journal of Recent Trends in Engi- neering, vol. 1, no. 2, pp. 250 254, 2009. 被引量:1
  • 4S. Rajasekaran, G. A. Vijayalakshmi Pai. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Appli- cations, Upper Saddle River, USA: Prentice Hall, 2004. 被引量:1
  • 5K. Deshmukh, G. N. Shinde. An adaptive neuro-fuzzy sys- tem for color image segmentation. Journal of the Indian Institute of Science, vol. 86, no. 5, pp. 493-506, 2006. 被引量:1
  • 6B. Sowmya, B. Sheela Rani. Colour image segmentation us- ing fuzzy clustering techniques and competitive neural net- work. Applied Soft Computing, vol. 11, no. 3, pp. 3170 3178, 2011. 被引量:1
  • 7S. O. Haykin. Neural Networks and Learning Machines, Up~ per Saddle River, USA: Prentice Hall, 2008. 被引量:1
  • 8P. J. Baldevbhai, R. S. Anand. Color image segmentation for medical images using L*a*b* color space. IOSR Jour- nal of Electronics and Communication Engineering, vol. 1, no. 2, pp. 24-45, 2012. 被引量:1
  • 9G. Dong, M. Xie. Color clustering and learning for image segmentation based on neural networks. IEEE Transactions on Neural Networks, vol. 16, no. 4, pp. 925-936, 2005. 被引量:1
  • 10B. Roman, Y. Kazanovich, D. Chik, V. Tikhanoff, A. Can- gelos. A neural model of selective attention and object seg- mentation in the visual scene: An approach based on partial synchronization and star-like architecture of connections. Neural Networks, vol. 22, no. 5-6, pp. 707-719, 2009. 被引量:1

共引文献17

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部