期刊文献+

改进支持向量回归机的短时交通流预测 被引量:22

Promoted Short-term Traffic Flow Prediction Model Based on Deep Learning and Support Vector Regression
下载PDF
导出
摘要 短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求. Short-term traffic flow prediction is the basis of an Intelligent Transport Systems(ITS)project.However,in current practice,the methods for short-term traffic flow prediction have encountered many challenges in fitting the traffic flow data,one is it depends too much on historical data.Therefore,a novel short-term traffic flow forecasting method based on Deep Learning and Support Vector Regression(DL-SVR)is proposed in this paper.Firstly,the DL-SVR model is composed by a Restricted Boltzmann Machine(RBM)visible inputting layer with some RBM intermediate layers and a radial SVR output layer.Furthermore,in order to enhance the generalization of the model,an improved Particle Swarm Optimization(PSO)algorithm is designed to optimize the number of nodes in the inputting layer.Finally,the DL-SVR method is compared with other typical short-term traffic flow prediction algorithms on the same computing platform.The experimental results show that the proposed DL-SVR method gets a higher accuracy in its real-time prediction.
作者 傅成红 杨书敏 张阳 FU Cheng-hong;YANG Shu-min;ZHANG Yang(Department of Transport,Fujian University of Technology,Fuzhou 350118,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第4期130-134,148,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 福建省自然科学基金(2016J01725) 福建工程学院科研发展基金(GY-Z160133,GY-Z160123)~~
关键词 智能交通 深度学习 支持向量回归 短时交通流 粒子群 intelligent transportation deep learning support vector regression short-time traffic flow particle swarm optimization
  • 相关文献

参考文献2

二级参考文献18

  • 1肖云,韩崇昭,王选宏,张俊杰.基于核的自组织映射聚类[J].西安交通大学学报,2005,39(12):1307-1310. 被引量:3
  • 2王进,史其信.短时交通流预测模型综述[J].中国公共安全(学术版),2005(1):92-98. 被引量:59
  • 3Zhang Yu-mei, Qu Shi-ru, Wen Kai ge. Short-time traffic flow prediction using third-order Volterra fil- ter with product-decoupled structure[C] // The 3rdInternational Conference on Intelligent System and Knowledge Engineering, Xiamen, China: Inst of Elec and Elec Eng Computer Society, 2008. 被引量:1
  • 4Endo Masahiro, Ueno Masahiro, Tanabe Takaya. A clustering method using hierarchical self organizing mapsJ2. Journal of VLSI Signal Processing Sys tems {or Signal, Image, and Video Technology, 2002, 32(1/2): 105-118. 被引量:1
  • 5Cetiner B Gultekin, Sari Murat, Borat Oguz. A neural network based traffic-flow prediction model [J]. Mathematical and Computational Applications, 2010, 15(2): 269-278. 被引量:1
  • 6Sheel S, learning T, using Varshney R. adaptive learn momentum coefficient [C]//The 2nd Accelerated mg Int rate with Conference on Industrial and Information Systems, 2007: 307-310. 被引量:1
  • 7Joel V, et al. Network-wide statistical modeling, prediction and monitoring of computer traffic [J]. Technometrics, 2013,55 (1) :79- 93. 被引量:1
  • 8Chan Kit Yah, et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm [J]. IEglg Transactions on Intelligent Transportation Systems, 2012,13(2) : 644-654. 被引量:1
  • 9Gurean C, Anton I-. An online change-point-based model for traffic parameter prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(3) :1360-1369. 被引量:1
  • 10Zhang N, et al. Seasonal autoregressive integrated moving average and support vector machine models [J].Transportation Research Record: Journal of the Transportation Research Board, 2011,2215 ( 1 ) : 85 92. 被引量:1

共引文献17

同被引文献153

引证文献22

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部