摘要
In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)(max)and coercivity H(cj)of Ce-Fe-B sintered magnet are improved from 6.76 to 9.13 MGOe by 35.1%,and from 1.44 to 1.67 kOe by 16.0%,respectively,via adding 5 wt%liquid phase alloy of Ce(35.58)Fe(57.47)Cu6 B(0.95)(at%).Compared with the magnet without Cerich alloy addition,the volume fraction of the grain-boundary phase with low melting point increases in the magnet with Ce-rich alloy additio n,which is be ne ficial to imp roving the microstructure and promoting the coercivity enhancement of the magnet.In the Ce-Fe-B magnet with Ce-rich alloy addition,Cu and Ce enrich in the grain boundaries of the magnet after annealing,therefore the as-annealed magnet has a higher coercivity than the as-sintered magnet.A distinct Fe-rich layer with the average thickness of 60 nm is found in the grain boundaries in the magnet without Ce-rich alloy addition,but it seems that Fe-rich phase disappears in the magnet with Ce-rich alloy addition.The present work suggests that the further improvement of coercivity in the Ce-Fe-B sintered magnets is expectable by designing the composition and structure of added liquid phase alloys.
In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)max and coercivity Hcj of Ce-Fe-B sintered magnet are improved from 6.76 to 9.13 MGOe by 35.1%,and from 1.44 to 1.67 kOe by 16.0%,respectively,via adding 5 wt% liquid phase alloy of Ce35.58Fe57.47Cu6 B0.95(at%).Compared with the magnet without Cerich alloy addition,the volume fraction of the grain-boundary phase with low melting point increases in the magnet with Ce-rich alloy additio n,which is be ne ficial to imp roving the microstructure and promoting the coercivity enhancement of the magnet.In the Ce-Fe-B magnet with Ce-rich alloy addition,Cu and Ce enrich in the grain boundaries of the magnet after annealing,therefore the as-annealed magnet has a higher coercivity than the as-sintered magnet.A distinct Fe-rich layer with the average thickness of 60 nm is found in the grain boundaries in the magnet without Ce-rich alloy addition,but it seems that Fe-rich phase disappears in the magnet with Ce-rich alloy addition.The present work suggests that the further improvement of coercivity in the Ce-Fe-B sintered magnets is expectable by designing the composition and structure of added liquid phase alloys.
基金
Project supported by the National Natural Science Foundation of China(51590882)
the Plan of National Key Research and Development of China(2016YFB0700903)