摘要
The strip-casting technique plays an important role in fabricating high coercivity sintered magnet. In this paper, we investigate the phase constitution and the microstructure of rapidly solidified Ce-Fe-B alloy fabricated by strip-casting. We find that the Ce2FelgB phase coexists with Fe, Fe2B, and CeFe2 phases in the Ce-Fe-B strips. The eutectic stucture consisting of Fe and Fe2B is encased in Ce2Fe14B grains, which is blocked by the CeFe2 grains at triple junctions, indicating that the microstructure of Ce-Fe-B strip is characteristic of a peritectic solidification. Thermal analysis indicates that the large supercooling of Ce2Fe14B results in the residual Fe and Fe2B. The microstructural optimization in Ce-Fe-B strips without Fe and Fe2B could be achieved by a heat treatment of 1000 ℃.
The strip-casting technique plays an important role in fabricating high coercivity sintered magnet. In this paper, we investigate the phase constitution and the microstructure of rapidly solidified Ce-Fe-B alloy fabricated by strip-casting. We find that the Ce2FelgB phase coexists with Fe, Fe2B, and CeFe2 phases in the Ce-Fe-B strips. The eutectic stucture consisting of Fe and Fe2B is encased in Ce2Fe14B grains, which is blocked by the CeFe2 grains at triple junctions, indicating that the microstructure of Ce-Fe-B strip is characteristic of a peritectic solidification. Thermal analysis indicates that the large supercooling of Ce2Fe14B results in the residual Fe and Fe2B. The microstructural optimization in Ce-Fe-B strips without Fe and Fe2B could be achieved by a heat treatment of 1000 ℃.
基金
Project supported by the National High Technology Research and Development Program of China(Grant No.2011AA03A401)