期刊文献+

基于RBF神经网络的合金铸铁动态腐蚀性能预测 被引量:1

Dynamic Corrosion Prediction of Alloy Cast Iron Based on RBF Neural Network
下载PDF
导出
摘要 通过动态质量损失腐蚀试验获取样本数据,利用Matlab的工具箱函数建立了合金铸铁碱腐蚀速率的RBF神经网络预测模型,并对网络模型的预测精度进行了研究。结果表明,在样本集和训练条件下,RBF神经网络模型较好地反映出腐蚀时间、合金铸铁主要合金成分与腐蚀速率之间的非线性关系,可用于合金铸铁在高温浓碱液中的动态腐蚀性能的预测;当RBF网络的扩展系数为0.47时,动态腐蚀速率的试验值与网络预测值之间的误差最小,且耐蚀性评价准确率达到100%。 The sample data were measured by the dynamic mass loss method.The RBF neural network prediction model of alloy cast iron corrosion rate was established by the toolbox function of Matlab,and the prediction precision of network model was studied.The results show that under this sample set and training condition,RBF neural network model reflected the non-linear relationship between corrosion time and main components of alloy cast iron and corrosion rate,and it was used to predict the dynamic corrosive nature of alloy cast iron in high temperature concentrated alkaline solution.When the spread coefficient of RBF neural network was 0.47,the error between measured values of dynamic corrosion rate and predicted values of network was minimum,and the appraisal accuracy rate of corrosion resistance reached 100%.
出处 《腐蚀与防护》 CAS 北大核心 2014年第6期612-614,626,共4页 Corrosion & Protection
基金 内蒙古自治区高等学校科学研究项目(NJZC14386)
关键词 RBF网络 稀土 腐蚀速率 耐碱蚀 预测 RBF neural network rare earth corrosion rate caustic corrosion resistance prediction
  • 相关文献

参考文献6

二级参考文献25

共引文献79

同被引文献27

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部