期刊文献+

基于自回归正则化和稀疏表示的图像超分辨率重建

Super-resolution Reconstruction Based on Sparse Representation and Auto-regressive Regularization
下载PDF
导出
摘要 针对图像超分辨率重建中稀疏系数解不精确和重建图像质量不理想的问题,本文提出了一种空间自回归正则化的超分重构算法.该重构算法联合稀疏K-SVD方法训练一个具有相同稀疏系数解的相对应于高低分辨率图像块的字典对,在此基础上利用自然图像本身具有的局部自回归性先验知识来对图像进行处理,经过模型的训练和选择引入正则化项,实现图像的局部约束,从而完整构造了基于正则化的稀疏编码目标函数,为了进一步实现图像去模糊得到清晰图像,利用退化模型实现全局约束.实验结果表明:与Bicubic、NE和SCR等算法相比,本文算法在主观视觉效果和客观评价指标方面都有了一定地提升. In order to solve the problem that the sparse representation coefficient is not accurate and the reconstruction effect is not ideal in the super-resolution reconstruction,a super-resolution reconstruction algorithm based on sparse representation and autoregressive regularization is proposed.Firstly,this paper used the K-SVD method to train the dictionary that suitable for high and low resolution image,so that the high and low resolution image patches have the same sparse representation coefficients under the dictionary.Secondly,the local autoregressive prior knowledge of the natural image is used to process the image,the regularization term is introduced through the training and selection of the model to realize the local constraint of the image,so that the regularization-based sparse coding the objective function.Finally,the clear and high resolution images are obtained by the whole constrained optimization.Experimental results validate that compared with the methods of Bicubic,NE and SCR,the proposed approach achieves better super-resolution reconstruction effects in both the subjective visual effect and the objective evaluation index by using the adaptive regularization term to further constraint the local structure.
作者 李丽敏 冉峰 郭爱英 郁怀波 沈华明 LI Limin;RAN Feng;GUO Aiying;YU Huaibo;SHEN Huaming(Microelectronic R&D Center,Shanghai University,Shanghai 200444,China;The New Display Technologyand Application of Integrated Key Laboratory of Ministry of Education,Shanghai University,Shanghai 200444,China;School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China)
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期87-94,102,共9页 Journal of Fudan University:Natural Science
基金 国家自然科学基金(61376028 61674100) 上海市科委重大基础项目(16JC1400602)
关键词 图像重建 稀疏表示 字典训练 自回归正则化 image reconstruction sparse representation dictionary learning auto-regressive regularization
  • 相关文献

参考文献2

二级参考文献33

  • 1李民.基于稀疏表示的超分辨率重建和图像修复研究[D].成都:电子科技大学,2011. 被引量:2
  • 2Bhavsar A V. Range image super resolution via reconstruction of sparse range data [C] //Proc of 2013 Int Conf on Intelligent Systems and Signal Processing (ISSP). Piscataway, NJ: IEEE, 2013:198-203. 被引量:1
  • 3Tian Y, Yap K. Joint image registration and super-resolution from low-resolution images with zooming motion [J]. IEEE Trans on Circuits and Systems for Video Technology, 2013, 23(7) : 1224-1234. 被引量:1
  • 4Chang Ho-Hsuan, Shia Jin-Shing, Tsai Zeng-Hwa. Image registration based on CEMD [C] //Proc of the 2nd IEEE Int Syrup on Next-Generation Electronics(ISNE). Piscataway, NJ: IEEE, 2013: 537-540. 被引量:1
  • 5Yang Min-Chun, Wang Yu-Chiang Frank. A self-learning approach to single image super-resolution [J]. IEEE Trans on Multimedia, 2013, 15(3) 498-508. 被引量:1
  • 6Zhu Qiuyu, Li Yiehun. Super-resolution and de-noising for portrait images using compressive sensing [C] //Proe of the 3rd Int Conf on Intelligent System Design and Engineering Applications(ISDEA). Piseataway, NJ: IEEE, 2013: 1368- 1371. 被引量:1
  • 7Pan Zongxu, Yu Jing, Huang Huijuan, et al. Super- resolution based on compressive sensing and structural self- similarity for remote sensing images [J]. IEEE Trans on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876. 被引量:1
  • 8Sasao Tomoki, Hiura Shinsaku, Sato Kosuke. Supe resolution with randomly shaped pixels and sparse regularization [C] //Proc of 2013 IEEE Int Conf on Computational Photography(ICCP). Piscataway, NJ: IEEE, 2013:1-11. 被引量:1
  • 9Ning Qiang, Chen Kan, Li Yi, et al. Image super-resolution via analysis sparse prior [J]. IEEE Signal Processing Letters, 2013, 20(4): 399-402. 被引量:1
  • 10Sung Cheol Park, Min Kyu Park, Moon Gi Kang. Super- resolution reconstruction: A technical overview [J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部