期刊文献+

智能视频监控系统中行人再识别技术研究综述 被引量:10

Review of person re-identification technology in intelligent video surveillance system
下载PDF
导出
摘要 现今社会中的视频监控网络已日渐成为人们生活中不可缺少的安防体系,行人再识别技术正是智能视频监控的关键。为使读者对行人再识别问题有一个深入、整体的了解,本文首先回顾行人再识别的研究以及发展历程;然后针对当前研究热点,分别从基于特征表示、度量学习以及深度学习网络的角度将经典算法进行分类总结;其次介绍常用行人数据集、性能评价指标以及经典数据集的实验结果对比;最后对行人再识别今后的发展趋势作进一步展望。 The video surveillance equipment which is widely applied in today′s society has been indispensable security system,the key task in intelligent video surveillance is person re-identification (person re-id) exactly.The work of this paper will enable the readers to have an in-depth and overall understanding the person re-id problem.Firstly,the development process of person re-id is reviewed.Then the existing methods that based on feature representation,distance metric learning and deep learning network are summarized.Secondly,some comparison of experimental results on several commonly-used datasets,and performance evaluation standards,and common benchmark datasets are also introduced.Finally,the future develop direction of person re-id is discussed.
作者 胡正平 张敏姣 李淑芳 孙德刚 HU Zhengping;ZHANG Minjiao;LI Shufang;SUN Degang(School of Information Science and Engineering,Yanshan University,Qinhuangdao,Hebei 066004 China;Hebei Key Laboratory of Information Transmission and Signal Processing,Qinhuangdao,Hebei 066004,China;School of Electronic Information and Engineering,Shandong Huayu University of Technology,Dezhou,Shandong 253000,China)
出处 《燕山大学学报》 CAS 北大核心 2019年第5期377-393,共17页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61071199) 河北省自然科学基金资助项目(F2016203422)
关键词 行人再识别 视频监控 距离度量 深度学习 person re-identification video surveillance metric learning deep learning
  • 相关文献

参考文献2

二级参考文献36

  • 1Swain M J, Ballard D H. Indexing via color histograms. In: Proceedings of the 3rd International Conference on Computer Vision. Osaka, Japan: IEEE, 1990. 390-393. 被引量:1
  • 2Gray D, Brennan S, Tao H. Evaluating appearance mod- els for recognition, reacquisition, and tracking. In: Pro- ceedings of the 2007 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Rio de Janeiro, Brazil: IEEE. 2007. 41-47. 被引量:1
  • 3Farenzena M, Bazzani L, Perina A, Murino V, Cristani M. Person re-identification by symmetry-driven accumu- lation of local features. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, USA: IEEE, 2010. 2360-2367. 被引量:1
  • 4Ma B P, Su Y, Jurie F. BiCov: a novel image representa- tion for person re-identification and face verification. In: Proceedings of the 23rd British Machine Vision Confer- ence. Surrey, UK: IEEE, 2012. 1-6. 被引量:1
  • 5Cheng D S, Cristani M, Stoppa M, Bazzani L, Murino V. Custom pictorial structures for re-identification. In: Pro- ceedings of the 22nd British Machine Vision Conference. Dundee, UK: IEEE, 2011. 749-760. 被引量:1
  • 6Liu C X, Gong S G, Loy C C, Lin X G. Person re- identification: what features are important? In: Pro- ceedings of the 12th European Conference on Computer Vision. Florence, Italy: IEEE, 2012. 391-401. 被引量:1
  • 7Wang X G, Doretto G, Sebastian T, Rittscher J, Tu P. Shape and appearance context modeling. In: Proceed- ings of the llth International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8. 被引量:1
  • 8Li W, Zhao R, Xiao T, Wang X G. DeepReID: deep fil- ter pairing neural network for person re-identification. In: Proceedings of the 2014 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). Colum- bus, USA: IEEE, 2014. 152-159. 被引量:1
  • 9Ahmed E, Jones M, Marks T K. An improved deep learn- ing architecture for person re-identification. In: Proceed- ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 3908-3916. 被引量:1
  • 10Zhao R, Ouyang W L, Wang X G. Unsupervised salience learning for person re-identification. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR). Portland, USA: IEEE, 2013. 3586-3593. 被引量:1

共引文献29

同被引文献116

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部