期刊文献+

多特征融合与交替方向乘子法的行人再识别 被引量:7

Person re-identification based on multi-feature fusion and alternating direction method of multipliers
原文传递
导出
摘要 目的由于行人图像分辨率差异、光照差异、行人姿态差异以及摄像机视角和成像质量差异等原因,导致同一行人在不同监控视频中的外观区别很大,给行人再识别带来了巨大挑战。为提高行人再识别的准确率,针对以上问题,提出一种基于多特征融合与交替方向乘子法的行人再识别算法。方法首先利用图像增强算法对所有行人图像进行处理,减少因光照变化产生的影响,然后把处理后的图像进行非均匀分割,同时使用特定区域均值法提取行人图像的HSV和LAB颜色特征以及SILTP(scale invariant local ternary pattern)纹理特征和HOG(histogram of oriented gradient)特征,融合多种特征得到行人图像对的整体与局部相似度度量函数并结合产生相似度函数,最后使用交替方向乘子优化算法更新出最优的测度矩阵实现行人再识别。结果在VIPeR、CUHK01、CUHK03和GRID这4个数据集上进行实验,其中VIPeR、CUHK01和GRID 3个数据集Rank1(排名第1的搜索结果即为待查询人的比率)分别达到51.5%、48.7%和21.4%,CUHK03手动裁剪和检测器检测数据集Rank1分别达到62.40%和55.05%,识别率有了显著提高,具有实际应用价值。结论提出的多特征融合与交替方向乘子优化算法,能够很好地描述行人特征,迭代更新出来的测度矩阵能够很好地表达行人之间的距离信息,较大幅度地提高了识别率。该方法适用于大多数应用场景下的行人再识别。尤其是针对复杂场景下静态图像行人再识别问题,在存在局部遮挡、光照差异和姿态差异的情况下也能保持较高的识别正确率。 Objective Person re-identification is an extremely challenging problem and has practical application value. It plays an important role in video surveillance systems because it can reduce human efforts in searching for a target from a large number of videos. This topic has gained increasing interest in computer vision. Nowadays,person re-identification algorithms have been applied in criminal investigation,where the interference of passers-by can be eliminated to help the police find final suspects. However,differences in color,illumination,posture,imaging quality,as well as low-resolution ofthe captured frames cause large appearance variance across multiple cameras; thus,person re-identification remains a significant problem. An algorithm for person re-identification,which is based on multi-feature fusion and alternating direction method of multipliers,is proposed to improve the accuracy of person re-identification. Method First,the original images are processed by the image enhancement algorithm to reduce the impact of illumination changes. This enhancement algorithm is committed to provide an image that is close to human visual characteristics. Then,the method of non-uniform segmentation that processes images is used. The method uses a sub-window size of 10-by-10 pixels with 5-pixel overlapping steps to obtain the local information of the pedestrian image. Meanwhile,the method uses the specific region mean method to divide the pedestrian image into five blocks. Specifically,depending on the difference of the expression ability of the legs and torso,these parts are divided into three blocks and two blocks,respectively. Then,the second and third blocks take the maximum operation,whereas the other blocks perform the mean operation because the second and third blocks are less affected by ambient noise compared with the other blocks. We also extract the HSV and LAB color features of the processed images,a texture feature of scale-invariant local ternary pattern and a shape feature of histogram of oriented gradient.
作者 齐美彬 王慈淳 蒋建国 李佶 Qi Meibin;Wang Cichun;Jiang Jianguo;Li Ji(School of Computer and Information, Hefei University of Technology, Hefei 230009, Chin)
出处 《中国图象图形学报》 CSCD 北大核心 2018年第6期827-836,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(61771180) 安徽省重点研发计划(1704d0802183)~~
关键词 行人再识别 多特征融合 非均匀分割 特定区域均值法 HOG特征 交替方向乘子法 person re-identification multi-feature fusion non-uniform segmentation HOG feature specific region mean method alternating direction method of multipliers
  • 相关文献

参考文献4

二级参考文献58

  • 1高全学,梁彦,潘泉,陈玉春,张洪才.SVD用于人脸识别存在的问题及解决方法[J].中国图象图形学报,2006,11(12):1784-1791. 被引量:27
  • 2Doretto G, Sebastian T, Tu P, et al. Appearance-based person reidentification in camera networks : problem overview and current approaches [J]. Journal of Ambient Intelligence and Humanized Computing, 2011, 2(2) : 127-151. [ DOI: 10. 1007/s12652- 010-0034-y]. 被引量:1
  • 3Vezzani R, Baltieri D, Cucchiara R. People reidentification in surveillance and forensics: a survey [ J]. ACM Computing Sur- veys, 2013, 46 ( 2 ) : # 29. [ DOI: 10. 1145/2543581.2 543596 ]. 被引量:1
  • 4Ma B P, Jurie F, Su Y. Covariance descriptor based on bio-in- spired features for person re-Identification and face verification [J]. Image & Vision Computing, 2014, 32(6): 379-390. [DOI: 10. 1016/j. imavis. 2014.04. 002]. 被引量:1
  • 5Gong S, Cristani M, Yan S, et al. Person Re-Identification [M]. Belin: Springer, 2014: 1-20. [DOI: 10. 1007/978-1- 4471-6296 -4 ]. 被引量:1
  • 6Ma B, Su Y, Jurie F. Bieov: a novel image representation for person re-identifieation and face verification [ C ]//Proceedings of the British Maehive Vision Conference. Guildford, UK: BMVA Press, 2012: 1-11. [DOI: 10. 5244/C. 26.57]. 被引量:1
  • 7Farenzena M, Bazzani L, Perina A, et al. Person re-identifica- tion by symmetry-driven aeeumulation of local features [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Reeognition. San Francisco: IEEE Press, 2010: 2360-2367. [DOI: 10. ll09/CVPR. 2010.5 539926]. 被引量:1
  • 8Prosser B, Zheng W S, Gong S, et al. Person re-identification by support vector ranking [ C ]//Proceedings of the British Machine Vision Conference. Aberystwyth, UK: BMVA Press, 2010, 2(5): 1-11. [DOI: 10.5244/C. 24.21]. 被引量:1
  • 9Zheng W S, Gong S, Xiang T. PeFn re-identification by proba- bilistic relative distance comparison [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Provi- dence: IEEE Press, 2011: 649-656. [DOI: 10. ll09/CVPR. 2011. 5995598]. 被引量:1
  • 10Layne R, Hospedales T M, Gong S. Person re-identification by attributes [ C ]//Proceedings of the British Machine Vision Con- ference. Surrey, UK: BMVA Press, 2012, 2(3) : 1-9. [DOI: 10. 5244/C. 26. 24]. 被引量:1

共引文献38

同被引文献20

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部