摘要
文章给出了一种预给极点的二元向量连分式插值算法,根据给定的被插值函数的极点信息,构造出插值函数分母多项式中的一个因式,然后通过每个对应插值节点的向量值乘以一个确定的数,使得其变成一个无预给极点的二元向量插值问题,通过向量的Samelson逆构造出一个二元非张量积型向量连分式插值,再除以一个确定的函数,最后就得到了一个预给极点的二元向量连分式插值。此方法具有预给极点而且原本的重数保持不变。
In this paper, a binary vector continuous fractional interpolation algorithm with prescribed pole points is proposed. According to the pole information of the given interpolation function, a factor in the denominator polynomial of the interpolation function is constructed, and then through each corresponding interpolation node. The vector value is multiplied by a certain number, so that it becomes a binary vector interpolation problem without prescribed pole, and a binary non-tensor product vector continuous fractional interpolation is constructed by the Samelson inverse of the vector, and then divided by one. The determined function finally obtains a binary vector continuous fractional interpolation of the prescribed pole. This method has a prescribed pole and the original multiplicity remains the same. By numerical examples, the error of the function calculated by the rational interpolation algorithm of binary diagonal vector value is compared around the pole, which illustrates the advantages of the new method.
作者
孙思梦
赵前进
Sun Simeng;Zhao Qianjin(School of Mathematics and Big Data of Anhui University of Science and Technology,Huainan 232001)
出处
《绥化学院学报》
2019年第11期147-150,共4页
Journal of Suihua University
基金
国家自然科学基金项目“有理插值新方法及其在三维数字模型信息保护中的应用研究”(60973050)
关键词
预给极点
二元插值
重数
向量
prescribed poles
binary interpolation
multiplicity
vector