期刊文献+

关于N元向量值分叉连分式特征定理的证明

Proof of the characterization theorem of vector valued rational interpolants by continued fractions in n branches
下载PDF
导出
摘要 在多元向量值分叉连分式的构造中,特征问题的讨论尤为重要,结果已经给出了n元向量值分叉连分式插值的特征猜想,即一个n维插值点集包含N个元素,则建立在该点集上的n元向量值插值连分式将是一个分子为N-1次,分母为2[(N-1)/2]次的向量值有理函数,该文证明了这一猜想。 The characterization issue is of especial significance in the construction of the multi-variable branched vector-based continued fractions. In the related literature, an conjecture has been put forward that if an n-dimensional set of points, Ⅱ, contains N elements, then a vector valued continued fraction with n entrances of branches can be constructed and it is a vector valued rational function in Rn with total degrees of the numerator and denominator reaching N-1 and 2[ (N-1)/2] respectively. In this paper, the conjecture is proved.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第10期1371-1375,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(10171026 60473114) 安徽省自然科学基金资助项目(070416273x) 安徽省教育厅科技创新团队基金资助项目(2005TD03)
关键词 向量值 分又连分式 特征定理 vector value branched continued fraction characterization theorem
  • 相关文献

参考文献5

二级参考文献2

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部