期刊文献+

基于高阶残差和参数共享反馈卷积神经网络的农作物病害识别 被引量:22

High-Order Residual and Parameter-Sharing Feedback Convolutional Neural Network for Crop Disease Recognition
下载PDF
导出
摘要 当前,大部分农作物病害图像识别方法主要关注于精度而忽略了鲁棒性.在面向实际环境时,由于噪声干扰和环境因素影响导致识别精度不高.为此提出了一种高阶残差和参数共享反馈的卷积神经网络模型以应用于实际环境农作物病害识别.其中,高阶残差子网络为病害表观提供丰富细致的特征表达,以提高模型识别精度;参数共享反馈子网络用来进一步抑制原深层特征中的背景噪声,以提高模型的鲁棒性.实验结果表明,当面向实际环境农作物病害识别时,本文方法在识别精度和鲁棒性上均优于其他方法. Most of current crop-disease recognition approaches mainly focus on improving the recognition accuracy on public datasets,while ignoring the recognition robustness.When dealing with real-world recognition problem,the actual recognition accuracy of those approach are often unsatisfactory because of noise interference and environmental influence.To address these issues,we propose a high-order residual and parameter-sharing feedback convolutional neural network(HORPSF) for crop-disease recognition.The high-order residual subnetwork is helpful for improving the recognition accuracy of crop disease.The parameter-sharing feedback subnetwork can effectively depress the background noises and enhance the robustness of the model.Extensive experiment results demonstrate that the proposed HORPSF approach significantly outperforms other competing methods in terms of recognition accuracy and robustness,especially demonstrating superior performance when dealing with the real-world examples of crop-disease recognition.
作者 曾伟辉 李淼 李增 熊焰 ZENG Wei-hui;LI Miao;LI Zeng;XIONG Yan(Institute of Intelligent Machines,Chinese Academy of Sciences.Hefei,AnHui 230031,China;University of Science and Technology of China.Hefei,AnHui 230027,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第9期1979-1986,共8页 Acta Electronica Sinica
基金 国家重点研发计划资助(No.2016YFD0800901-03,No.2017YF0701600)
关键词 高阶残差 参数共享反馈 鲁棒性 农作物病害识别 high-order residual(HOR) parameter-sharing feedback(PSF) robustness crop disease recognition
  • 相关文献

参考文献6

二级参考文献58

  • 1田有文,李天来,李成华,朴在林,孙国凯,王滨.基于支持向量机的葡萄病害图像识别方法[J].农业工程学报,2007,23(6):175-180. 被引量:84
  • 2岑喆鑫,李宝聚,石延霞,黄海洋,刘君,廖宁放,冯洁.基于彩色图像颜色统计特征的黄瓜炭疽病和褐斑病的识别研究[J].园艺学报,2007,34(6):1425-1430. 被引量:39
  • 3Huang K, Aviyente S.Sparse representation for signal classification[A].Proceedings of Advances in Neural Information Processing Systems[C].Vancouver, Canada:The MIT Press, 2006.609-616. 被引量:1
  • 4Wright J, Yang A Y, Ganesh A, et al.Robust face recognition via sparse representation[J].Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2009, 31(2):210-227. 被引量:1
  • 5Zhuolin Jiang, Zhe Lin, Larry S Davis.Label consistent K-SVD:Learning a discriminative dictionary for recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2651-2664. 被引量:1
  • 6Elad M, Aharon M.Image denoising via sparse and redundant representations over learned dictionaries[J].Image Processing, IEEE Transactions on, 2006, 15(12):3736-3745. 被引量:1
  • 7Zhang Q, Li B.Discriminative K-SVD for dictionary learning in face recognition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].San Francisco, CA:IEEE, 2010.2691-2698. 被引量:1
  • 8Yang M, Zhang L, Feng X, et al.Fisher discrimination dictionary learning for sparse representation[A].Proceedings of IEEE International Conference on Computer Vision(ICCV)[C].Barcelona, Spain:IEEE, 2011.543-550. 被引量:1
  • 9Yang M, Zhang L.Gabor feature based sparse representation for face recognition with gabor occlusion dictionary[A].Proceedings of Computer Vision-ECCV 2010[C].Crete, Greece:Springer Berlin Heidelberg, 2010.448-461. 被引量:1
  • 10Yang M, Zhang L, Yang J, et al.Robust sparse coding for face recognition[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].Colorado Springs:IEEE, 2011.625-632. 被引量:1

共引文献307

同被引文献164

引证文献22

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部