期刊文献+

焊缝缺陷类型识别方法的研究 被引量:18

Recognition of Weld Defect Types
下载PDF
导出
摘要 针对焊缝射线检测图像中缺陷类型识别准确度较低的问题,提出了一种基于直接多类支持向量机的缺陷类型识别方法.该方法将焊缝缺陷类型识别问题转化为一个约束优化问题,采用由缺陷边缘特征和区域特征构成的特征向量对缺陷进行描述,解决了在实际训练样本较少的情况下,提高缺陷类型识别准确度的问题.实验表明,该方法的识别准确度为94.25%,比一对一支持向量机和多层感知神经网络的高,并且通过引入区域特征提高了特征组的缺陷描述能力. To improve the recognition accuracy of weld defects in the radiographic image,a method based on direct multiclass support vector machine (SVM) is proposed to recognize the defect types,where the recognition of weld defects is regarded as a constrained optimization problem,and the edge-based features and region-based features of the weld defect are employed as the feature vector. This method solves the difficulty of achieving higher accuracy under a small training set. The experimental results demonstrate that the recognition accuracy of the method gets 94.25%,higher than that of the one-versus-one SVM and multi-layer perceptron (MLP) neural network,and the introduced region-based features improve the characterization capability of the feature group.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第7期100-103,共4页 Journal of Xi'an Jiaotong University
关键词 射线检测图像 缺陷类型识别 直接多类支持向量机 radiographic image recognition of weld defect direct multiclass support vector machine
  • 相关文献

参考文献10

  • 1LIAO T W.Classification of welding flaw types with fuzzy expert systems[J].Expert Systems with Applications.2003.25(1),101-111. 被引量:1
  • 2LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49(3):154-159. 被引量:1
  • 3MERY D,DASILVAR R,CALOBAL P,et al.Pattern recognition in the automatic inspection of aluminium castings[J].Insight,2003,45(7):475-483. 被引量:1
  • 4WANG G,LIAO T W.Automatic identification of different types of welding defects in radiographic images[J].NDT & E International,2002,35(8):519-528. 被引量:1
  • 5ZHANG Xiaoguang,ZHU Zhencai,XU Jihua,et al.The classification algorithm of defects in weld image based on asymmetrical SVM[C] //International Conference on Control and Automation.Piscataway,NJ,USA:IEEE,2005:1215-1219. 被引量:1
  • 6ZHANG Xiaoguang,XU Jianjian,GE Guangying.Defects recognition on X-ray images for weld inspection using SVM[C] //Proceedings of 2004 International Conference on Machine Learning and Cybernetics.Piscataway,NJ,USA:IEEE,2004:3721-3725. 被引量:1
  • 7边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 8SILVA R R,CALA L P,SIQUEIRA M H S,et al.Pattern recognition of weld defects detected by radiographic test[J].NDT& E International,2004,37(6):461-470. 被引量:1
  • 9EFRON B,TIBSHIRANI R J.An introduction to the bootstrap[M].London,UK:Chapman & Hall,1997. 被引量:1
  • 10HSU C W,CHANG C C,LIU C J.A practical guide to support vector classification[EB/OL].[2010-03-20].http://www.csie.ntu.edu.tw/~cjlin/liblinear/. 被引量:1

同被引文献129

引证文献18

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部