期刊文献+

加权最小二乘法与卡尔曼滤波实时稳像技术 被引量:4

Improved least-squares and Kalman filtering real-time image stabilization
下载PDF
导出
摘要 无人机和车辆行驶等情况下拍摄的视频受外界影响会造成视频抖动。通过对比现有的电子稳像技术,提出了利用FAST获取特征点的位置信息,再通过光流法结合NCC匹配得到参考帧特征点在当前帧的位置信息,在此基础上结合RANSAC算法剔除错误匹配的特征点对的改进算法。为了提高运动矢量估计的精度,应用加权最小二乘法得到相邻帧间的刚性变换矩阵,并经过卡尔曼滤波进行运动平滑得到扫描运动矢量并补偿,最终得到实时的稳定视频。实验表明,视频序列稳像后的帧间变换保真度有所提高,并且能够达到实时处理速度。 Video taken in the case of drones and vehicles traveling would be affected by the outside world causing video jitter.This paper proposed to use FAST to obtain the position information of feature points by comparing with the existing electronic image stabilization technology.Then it obtained the position information of the reference frame feature point in the current frame by the optical flow method combined with NCC matching.Based on this,it combined with RANSAC algorithm to eliminate the wrong matching feature points pairs.In order to improve the accuracy of motion vector estimation,this paper applied weighted least squares method to obtain the rigid transformation matrix between adjacent frames.The video was smoothed by Kalman filter to get the motion vector and compensated,and finally got a stable video in real time.The experimental table shows that it improves the fidelity of the inter-frame transform after video sequence stabilization,and achieves the real-time processing speed.
作者 谷乐 陈志云 Gu Le;Chen Zhiyun(School of Data Science & Engineering,East China Normal University,Shanghai 200062,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3121-3123,共3页 Application Research of Computers
关键词 电子稳像技术 特征点匹配 最小二乘法 卡尔曼滤波 运动补偿 electronic image stabilization feature points matching least squares method Kalman filtering motion compensation
  • 相关文献

参考文献4

二级参考文献35

  • 1罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 2YANG J L,SCHONFELD D,MOHANED M. Ro bust video stabilization based on particle filter tracking of projected camera motion[J].IEEE Transactions on Circuits and Systems for Video Technol,2009,(07):945-954. 被引量:1
  • 3XIE T,ZHU B,XIE L J. A circular projection based digital image stabilization algorithm and its implementation for rotating image sequences[A].2010.1236-1239. 被引量:1
  • 4LIU K X,QIAN J,YANG R K. Block matching algorithm based on RANSAC algorithm[A].2010.223-227. 被引量:1
  • 5XI L D,LIN X G. Digital image stabilization based on circular block matching[J].IEEE Transaction on Consumer Electrionics,2006,(02):566-574.doi:10.1109/TCE.2006.1649681. 被引量:1
  • 6Wang C T, Kim J H, Byun K Y, et al. Robust digital image stabilization using the Kalman filter [ J ]. Transactions on Consumer Electronics, 2009, 55 ( 1 ) :6 - 14. 被引量:1
  • 7Kurazume R, Hirose S. Development of image stabilization system for remote operation of walking robots [ C ]//Proceedings of IEEE International Conference on Robotics and Automation, 2000,2 : 1856 - 1861. 被引量:1
  • 8Grundmann M, Kwatra V, Essa I. Auto-directed video stabilization with robust L1 optimal camera paths [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2011:225 - 232. 被引量:1
  • 9Lee K Y, Chuang Y Y, Chen B Y, et al. Video stabilization using robust feature trajectories [ C ]//Proceedings of 12th International Conference on Computer Vision, 2009:1397 - 1404. 被引量:1
  • 10Ryu Y G, Roh H C, Chung M J, et al. Long-time video stabilization using point-feature trajectory smoothing [ C ]// Proceeding of IEEE International Conference on Consumer Electronics, 2011:189 - 190. 被引量:1

共引文献18

同被引文献39

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部