期刊文献+

基于改进的稀疏表示和PCNN的图像融合算法研究 被引量:10

Image fusion based on the improved sparse representation and PCNN
下载PDF
导出
摘要 为提高图像融合的清晰度,本文提出一种基于改进的稀疏表示和脉冲耦合神经网络(pulse coupled neuralnetwork,PCNN)的图像融合。利用非下采样剪切波变换(non-subsampled shearlet transform,NSST)对源图像进行分解变换,得到相应的低频子带和高频子带具有不同的信息。对于低频子带,采用改进的稀疏表示进行融合,利用K奇异值分解(K-singular value decomposition,K-SVD)算法,并对源图像进行自适应学习的多个子字典构造成联合词典。对于高频子带,则改进PCNN融合系数的选择方法,利用改进的空间频率作为神经元反馈输入来激励PCNN模型,并根据点火输出的总幅度最大的融合规则选择高频系数。最后,将融合后的低频子带和高频子带系数进行NSST逆变换,重构出融合图像。实验结果表明:该算法很好地保留了图像的边缘信息,并且得到的图像在相关的客观评价标准上也取得了良好的效果,表明了本算法的有效性。 To improve the clarity of image fusion,in this paper,we propose an image-fusion algorithm based on im-proved sparse representation and a pulse-coupled neural network(PCNN).First,using a non-subsampled shearlet trans-form(NSST),source images are decomposed into low-frequency and high-frequency sub-band coefficients,which con-tain different information.Then,we use the K-singular value decomposition algorithm to fuse the improved sparse rep-resentation with low-frequency sub-band coefficients and construct a joint dictionary from the adaptive learning mul-tiple sub-dictionaries in the source images.The high-frequency sub-band coefficients are fused with the improved PCNN.To stimulate the PCNN model,we use the modified spatial frequency as neuron feedback input.The high-fre-quency coefficients are selected according to the fusion rule for the maximum amplitude of fire output.Finally,we re-construct the fused image with the NSST inverse transform of the fused low-frequency and high-frequency sub-band coefficients.The experimental results show that the proposed algorithm preserves the edge information of the source im-ages very well;additionally,the fused image achieves good results on the evaluation criteria,thus verifying the effect-iveness of the proposed algorithm.
作者 王建 吴锡生 WANG Jian;WU Xisheng(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第5期922-928,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61672265)
关键词 图像处理 图像融合 非下采样剪切波变换 稀疏表示 自适应学习字典 联合字典 脉冲耦合神经网络 改进的空间频率 image processing image fusion NSST sparse representation adaptive learning dictionary joint dictionary PCNN improved spatial frequency
  • 相关文献

参考文献10

二级参考文献65

共引文献85

同被引文献102

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部