期刊文献+

基于fastMCD和DBSCAN的公车私用监管模型

Model to supervise the private use of official vehicles based on fastMCD and DBSCAN
下载PDF
导出
摘要 使用上门查询、蹲点守候等人工手段对公务用车私用进行监管,效率低下且成本高昂。为自动、客观管理公务车辆,挖掘和监控公车私用行为,提出一种基于fastMCD和DBSCAN的公车私用监管模型。利用fastMCD算法对于异常检测的鲁棒性,提取公务车辆使用时长和行驶里程中的异常联系,并结合历史北斗定位数据,建立DBSCAN异常轨迹检测模型,计算公务车辆行驶轨迹的异常程度。实验结果表明,该模型可以较为有效地解决公车私用监管的问题。 The conventional method uses the manual means such as on-site inquiry and waiting to supervise the private use of official vehicles,which is inefficient and costly.In order to automatically and objectively manage official vehicles,excavate and monitor the private behavior of buses,a public vehicle supervision model based on fastMCD and DBSCAN is proposed.By using the fastness of the fastMCD algorithm for anomaly detection,extracting the abnormal relationship between the duration of the official vehicle and the mileage,and combining the historical Beidou positioning data,a DBSCAN anomaly trajectory detection model is established to calculate the abnormality of the trajectory of the official vehicle.The experimental results show that the model can solve the problem of bus private supervision more efficiently.
作者 聂启阳 朱峰 NIE Qiyang;ZHU Feng(State-owned Assets Management Center of Sichuan Provincial Government Offices,Chengdu 610000,China)
出处 《技术与市场》 2019年第10期176-180,共5页 Technology and Market
基金 四川省科技计划项目(2007FZ0073)
关键词 公车私用 数据挖掘 fastMCD 异常检测 anomaly detection data mining fast MCD private use of official vehicles
  • 相关文献

参考文献9

二级参考文献27

  • 1谢玉珑,王继红,梁逸曾,俞汝勤.化学计量学中的稳健估计方法[J].分析化学,1994,22(3):294-300. 被引量:25
  • 2Fatemah A A. A new contamination model for robust estimation with large high-dimensional data sets [ D ]. Vancouver: The University of British Columbia, 2003. 被引量:1
  • 3Rousseeuw P J. Least median of squares regression [ J ]. Journal of the American Statistical Association, 1984,79 : 871 880. 被引量:1
  • 4Rousseeuw P J, Van Driessen K. Fast algorithm for the minimum covariance determinant estimator[ J ]. Technometrics, 1999,41:212- 223. 被引量:1
  • 5Chiu S L. Fuzzy model identification based on cluster estimation[J ]. Journal of Intelligent and Fuzzy Systems, 1994,2(3):267- 278. 被引量:1
  • 6Francisco A T, Casvalho D. Fuzzy C-means clustering methods for symbolic interval data [J ]. Pattern Recognition Letters, 2007,28(4) :423 -437. 被引量:1
  • 7Chang K Y, VanroUeghem P A. Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants [J].Journal ofBiotechnology, 2003,105 : 135 - 163. 被引量:1
  • 8Wang W, Yu W, Zhao L J, et al. PCA and neural networksbased soft sensing strategy with application in sodium aluminate solution [ J ]. Journal of Experimental & Theoretical Artificial Intelligence, 2011,23 ( 1 ) : 127 - 136. 被引量:1
  • 9张裕民.机关事务管理工作实务[M]上海:上海人民出版社,2005. 被引量:1
  • 10Varun Chandola,Arindam Banerjee,Vipin Kumar.Anomaly detection[J]. ACM Computing Surveys (CSUR) . 2009 (3) 被引量:4

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部