期刊文献+

一种基于高斯混合模型的海上浮标轨迹聚类算法 被引量:3

A Clustering Algorithm for Sea Buoy Trajectory Based on Gaussian Mixture Model
下载PDF
导出
摘要 海上环境不同于陆地,其不受道路、轨道的限制和受表面风流场多因素影响,其目标的运动轨迹更显杂乱,给海上目标的轨迹分析带来挑战。提出一种基于高斯混合模型的海上浮标轨迹的聚类算法。该算法将高斯混合模型应用于漂移浮标的复杂不规则轨迹的聚类,能够有效消除轨迹中异常点的影响。仿真实验表明针对浮标漂移轨迹GMM算法较K-means算法更优,鲁棒性更好。该研究成果可应用于海上搜救、航路规划等领域。 The sea environment is different from the land trajectory has a certain regularity, a variety of factors are not controlled, resulting in mari- time trajectory analysis is more difficult. So, presents an algorithm for sea buoy trajectory clustering based on Gaussian Mixture Model. The algorithm can be applied to the unrestricted and complex trajectory of the sea buoy, and the irregular trajectory. And it can effectively elimi- nate the influence of abnormal points in the trajectory. The experimental results show that the Gaussian mixture model clustering algorithm has higher reliability than K-means. The research results can be applied to such fields as maritime search and rescue, route planning and
出处 《现代计算机》 2017年第24期3-5,8,共4页 Modern Computer
关键词 聚类 高斯混合模型 浮标 漂移轨迹 Clustering Gaussian Mixture Model Sea Buoy Drafting Trajectory
  • 相关文献

参考文献9

二级参考文献63

共引文献165

同被引文献25

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部