摘要
The FLNG spiral wound heat exchanger(SWHE) is affected by the sea conditions, which leads to more complex flow process and decrease the heat transfer performance of the heat exchanger. In order to study the thermal performance of FLNG SWHE under heaving and swaying conditions, the experimental devices of FLNG SWHE and six-DOF(degree of freedom) sloshing platform were built. The effects of heaving and swaying motions on the pressure drop and heat transfer characteristics were analyzed at different sloshing amplitudes. The results showed that the heaving and swaying motions can cause the temperature rise and pressure fluctuation of SWHE, especially for swaying. The effect of sloshing on the heat transfer performance at the top of SWHE was greater than bottom. The pressure fluctuation percentage was within 7% and the amount of temperature change was less than 2℃, under the sloshing displacement among 120–255 mm.
The FLNG spiral wound heat exchanger(SWHE) is affected by the sea conditions, which leads to more complex flow process and decrease the heat transfer performance of the heat exchanger. In order to study the thermal performance of FLNG SWHE under heaving and swaying conditions, the experimental devices of FLNG SWHE and six-DOF(degree of freedom) sloshing platform were built. The effects of heaving and swaying motions on the pressure drop and heat transfer characteristics were analyzed at different sloshing amplitudes. The results showed that the heaving and swaying motions can cause the temperature rise and pressure fluctuation of SWHE, especially for swaying. The effect of sloshing on the heat transfer performance at the top of SWHE was greater than bottom. The pressure fluctuation percentage was within 7% and the amount of temperature change was less than 2°C, under the sloshing displacement among 120–255 mm.
基金
supported by the National Natural Science Foundation of China (No. 51604294)
the Natural Science Foundation of Shandong Province of China (No. ZR2016EEQ02)