期刊文献+

基于用户评论的商品特征提取及特征价格研究 被引量:8

Research on Product Characteristics Extraction and Hedonic Price Based on User Comments
原文传递
导出
摘要 【目的】针对特征价格研究缺乏特征选取标准的现状,基于大规模用户评论,提出一种商品特征的挖掘与选取方法,对特征价格研究进行改进和延伸。【方法】提取用户评论的关键词,通过关键词聚类获取消费者显著偏好的商品特征,在此基础上建立特征价格模型反映特征价格。为验证模型的科学性和有效性,以广州在售新楼盘为例进行实证研究。【结果】基于用户评论挖掘出7个消费者显著偏好的楼盘特征,以此建立的模型拟合优度达0.760, DW统计量为2.013,楼盘有价特征的用户偏好度和价格影响力的相关系数达0.989。【局限】实验数据来源仅局限于房地产网站。【结论】相比已有研究,基于用户评论选取特征构建的模型在拟合优度上有一定提高,能够较准确地评估商品价格,有效避免特征之间的多重共线性问题,还能延伸探究消费者的偏好理性,给企业和消费者行为提供一定的指导依据。 [Objective] This paper proposes a method to extract product characteristics from user comments, aiming to address the issues facing hedonic price research.[Methods] First, we extracted keywords from user comments. Then, we retrieved the product characteristics favored by consumers through keywords clustering, and established the hedonic price model. Finally, we examined the proposed model with the sales of new properties in Guangzhou.[Results] We found seven real estate characteristics of significant consumer preferences from the user comments. The degree of fitting of the model reached 0.760, the DW statistic was 2.013, and the correlation coefficient between user preferences and price of the real estates was 0.989.[Limitations] The experimental data was collected from real estate website only.[Conclusions] The new model based on users comments could accurately evaluate the price of products. It also helps us effectively avoid multiple collinearity problems between independent variables and further explore business and consumer behaviors.
作者 文秀贤 徐健 Wen Xiuxian;Xu Jian(School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第7期42-51,共10页 Data Analysis and Knowledge Discovery
基金 广东省自然科学基金项目“情感分歧度量化模型及其应用研究”(项目编号:2018A030313981)的研究成果之一
关键词 特征价格 特征提取 用户评论 关键词 词向量 Hedonic Price Characteristic Extraction User Comments Keywords Word Vectors
  • 相关文献

参考文献8

二级参考文献62

  • 1蒋立红,李庆花.影响房价的区位因素分析[J].城市开发,2005(4):79-81. 被引量:15
  • 2魏海燕,张文贤.商品住宅主因素定价模型研究[J].科技导报,2006,24(11):49-54. 被引量:4
  • 3苏方林.省域R&D知识溢出的GWR实证分析[J].数量经济技术经济研究,2007,24(2):145-153. 被引量:40
  • 4吴璟,刘洪玉,马亚男.住房价格指数的主要编制方法及其选择[J].建筑经济,2007,28(7):27-30. 被引量:14
  • 5Stephen A, Samaha, Wagner A, Kamakura. Assessing the market value of real estate property with a geographically weighted stochastic frontier model [J]. Real Estate Econmics, 2008,36 (4): 717 - 751. 被引量:1
  • 6Wu F L. Housing provision under globalisation : a case study of Shanghai[J].Environment and Planning A, 2001,33 : 1 741 - 1 764. 被引量:1
  • 7Stephen malpezzi ,Gregory H Chun, Richard K Green. New place - to - place housing price indexes for US metropolitan areas,and their determinants [J]. Real Estate Economics, 1998,26 (2) : 235 - 274. 被引量:1
  • 8Allen C, Goodman. ltedonic prices,price indices and housing markets[J]. Jouranl of Urban Economics, 1978,5:471 - 484. 被引量:1
  • 9Li Z G,Wu F L. Tenure - based residential segregation in post - reform Chinese cities: a case study of Shanghai[J]. Transactions of the Institute of British Geographers, 2008,7 : 404 - 419. 被引量:1
  • 10Wu F L.Sociospatial differentiation in urban China:evidence from Shanghai's real estate markets [J]. Environment and Planning A, 2002,34:1 591 - 1 615. 被引量:1

共引文献313

同被引文献136

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部