期刊文献+

方差稳定变换下曲波域MR图像莱斯噪声去除算法 被引量:2

MR images denoising for Rician noise using curvelet transform and variance stabilizing transformation
下载PDF
导出
摘要 磁共振图像往往含有莱斯噪声,不同于加性高斯噪声,莱斯噪声的分布与图像的数据相关,使其更为难以去除.已有方法表明,方差稳定变换可以将莱斯噪声分布变换为方差稳定的高斯分布.利用该特性,结合曲波变换这一新的多尺度变换理论,提出一种磁共振图像莱斯噪声去除算法.算法分别采用了硬阈值和贝叶斯软阈值两种曲波域去噪方法,并针对这两种方法对曲波域低频系数层未做有效去噪的缺陷,提出对低频系数层进行软阈值去噪的改进.实验结果表明,改进算法在峰值信噪比和平均结构相似度的评价上均有较大提高,证明该算法在去除莱斯噪声及保护图像信息上的有效性. Magnetic resonance image is often corrupted with Rician noise.Unlike additive Gaussian noise,Rician noise is signal-dependent which makes it difficult to separate signal from noise.Variance stabilizing transformation is developed to convert Rician distribution with variable variance to Gaussian distribution with constant variance.Utilizing this property,a new MR images denoising algorithm for Rician noise is proposed based on the new multi-scale transformation theory of curvelet transform.Two curvelet-domain denoising operations,hard thresholding and Bayesian soft thresholding,are used in the algorithm.Since these two methods do not denoise the curvelt coefficients of the low frequency subbands,this algorithm proposes a soft thresholding denoising method.Experimental results demonstrate that the proposed algorithm shows improved performance over the existing methods in terms of peak signal to noise ratio and structural similarity index measures.Comparative analysis reveals the efficacy of the proposed scheme to Rician noise removal while preserving the image details.
作者 孙中皋 王巧玲 王新军 王欣月 SUN Zhonggao;WANG Qiaoling;WANG Xinjun;WANG Xinyue(School of Physic and Electronic Technology,Liaoning Normal University,Dalian 116029,China)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2019年第3期335-343,共9页 Journal of Liaoning Normal University:Natural Science Edition
基金 辽宁省教育厅科学研究青年项目(L201783643) 辽宁省大学生创新创业训练计划项目(201710165000013)
关键词 磁共振图像 莱斯噪声 曲波变换 方差稳定变换 magnetic resonance imaging Rician noise curvelet transform variance stabilizing transformation
  • 相关文献

参考文献1

二级参考文献10

  • 1LIU C,ZELISKI R S,KANG S B,et al. Automatic estimation and removal of noise from a single image[J~. IEEE Trans on Pattern Analysis and Machine,2008,30(2):156-158. 被引量:1
  • 2GUNTURK g K. Fast bi!.ateral filter with arbitrary range and domain kernelsE]]. IEEE Trans on Image Processing, 2011,20 (9) : 2690-2696. 被引量:1
  • 3YAN R,SHAO L, LIN Y. Nonlocal hierarchical dictionary learning using wavelets for image denoising[J]. IEEE Trans on Image Processing, 2013,22 (12) :4689-4698. 被引量:1
  • 4CHEN S, LIU M, ZHANG W. Edge preserving image denoising with a closed form solution~J]. Pattern Recognition, 2013,46 (3) : 976-988. 被引量:1
  • 5CHO S I,KANG S J, KIM H S, et al. Dictionary based anisotropic diffusion for noise reduction~J]. Pattern Recognition Letters, 2014,46(3) :36 45. 被引量:1
  • 6LONG Z L,YOUNAN N H. Statistical image modeling in the contourlet domain using contextual hidden Markov models[J]. Sig nal Processing,2009,89(5) :946 951. 被引量:1
  • 7LIN C F, WANG S D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002,13 (2) .. 464-471. 被引量:1
  • 8STARCK ] L,CANDI~S E ],DONOHO D L. The eurvelet transform for image denoisingEJ]. IEEE Trans on Image Processing, 2002,11 (6) : 670-684. 被引量:1
  • 9WANG X Y,FU Z K. A wavelet based image denoising using least squares support vector machine[J~. Engineering Applications of Artificial Intelligence, 2010,23 (6) ~ 862-871. 被引量:1
  • 10邢丹俊,王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,18(2):42-45. 被引量:13

共引文献1

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部