期刊文献+

基于模糊支持向量机的曲波域图像去噪算法 被引量:2

Image denoising based on fuzzy support vector machine
下载PDF
导出
摘要 图像去噪是图像处理领域的研究热点,数字图像去噪方法研究仍然是一项富有挑战性的工作.本文以性能卓越的曲波(Curvelet)变换理论为基础,提出了一种基于模糊支持向量机(FSVM)的曲波域图像去噪算法.该算法的基本工作原理为:首先,对原始噪声图像做曲波分解以获得变换系数;然后,结合噪声分布特点确定系数空间性,并构造出FSVM的训练特征;最后,对高频曲波系数进行模糊分类与自适应阈值去噪,并进一步对去噪后系数进行曲波重构以得到去噪图像.通过仿真实验结果,证明了本文算法在消除伪吉布斯(Gibbs)现象的同时,具有较强的抑制噪声能力和边缘保护能力. Image denoising is of great importance in the field of image processing.In this paper,we present an effective image denoising approach using curvelet transform and fuzzy support vector machine(FSVM).Firstly,the noisy image is decomposed into use curvelet transform frequency and orientation in response to different sub-bands.Secondly,the feature vector noisy pixels of the image is constructed space regularity curvelet domain and fuzzy support vector machine(FSVM)obtained through training model.Then the curvelet detail coefficients are divided into two categories(edge correlation coefficient and noise-related)by the FSVM training model.Finally,the detail subbands of curvelet coefficients are denoised by using the adaptive thresholds.The simulation results prove that the proposed algorithm can not only eliminate the pseudo-Gibbs(Gibbs)phenomena,but also has the strong ability to suppress noise and edge protection.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2016年第1期44-49,共6页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金项目(61472171 61272416) 辽宁省教育厅高等学校科学研究一般项目(L2015289) 辽宁师范大学青年科学研究项目(LS2014L016)
关键词 图像去噪 曲波变换 模糊支持向量机 自适应阈值 image denoising curvelet transform fuzzy support vector machine adaptive threshold
  • 相关文献

参考文献12

  • 1LIU C,ZELISKI R S,KANG S B,et al. Automatic estimation and removal of noise from a single image[J~. IEEE Trans on Pattern Analysis and Machine,2008,30(2):156-158. 被引量:1
  • 2GUNTURK g K. Fast bi!.ateral filter with arbitrary range and domain kernelsE]]. IEEE Trans on Image Processing, 2011,20 (9) : 2690-2696. 被引量:1
  • 3YAN R,SHAO L, LIN Y. Nonlocal hierarchical dictionary learning using wavelets for image denoising[J]. IEEE Trans on Image Processing, 2013,22 (12) :4689-4698. 被引量:1
  • 4CHEN S, LIU M, ZHANG W. Edge preserving image denoising with a closed form solution~J]. Pattern Recognition, 2013,46 (3) : 976-988. 被引量:1
  • 5CHO S I,KANG S J, KIM H S, et al. Dictionary based anisotropic diffusion for noise reduction~J]. Pattern Recognition Letters, 2014,46(3) :36 45. 被引量:1
  • 6LONG Z L,YOUNAN N H. Statistical image modeling in the contourlet domain using contextual hidden Markov models[J]. Sig nal Processing,2009,89(5) :946 951. 被引量:1
  • 7LIN C F, WANG S D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002,13 (2) .. 464-471. 被引量:1
  • 8STARCK ] L,CANDI~S E ],DONOHO D L. The eurvelet transform for image denoisingEJ]. IEEE Trans on Image Processing, 2002,11 (6) : 670-684. 被引量:1
  • 9张宇..基于SVM与非局部均值滤波的图像去噪算法研究[D].辽宁师范大学,2012:
  • 10付仲凯..基于多尺度几何变换的图像去噪方法研究[D].辽宁师范大学,2010:

二级参考文献6

  • 1Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier Analysis and Applications, 1998,4(3) :247 - 269. 被引量:1
  • 2Sweldens W. The lifting scheme: A custom - design construction of biorthogonal wavelets[J]. Applied and Computational Harmonic Analysis, 1996,3(2 ) : 186 - 200. 被引量:1
  • 3Sweldens W. The lifting scheme: A construction of second generation wavelets[J]. SIAM Journal on Mathcmatical Analysls, 1997,29(2) :511 - 546. 被引量:1
  • 4Donoho. De-noising by soft - thresholding[ J ]. IEEE Transactions on Information Theory, 1995,41 : 613 - 627. 被引量:1
  • 5Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425 -455. 被引量:1
  • 6Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Procession,2000,9(9) : 1532 - 1546. 被引量:1

共引文献12

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部