期刊文献+

基于GA-SVM算法烟叶部位致香成分差异性分析 被引量:1

Difference analysis of aroma components in tobacco leaves based on GA-SVM
下载PDF
导出
摘要 采用高效液相色谱-气相色谱-质谱联用法(HPLC-GC-MS)测定中部和下部烟叶的巨豆三烯酮、β-紫罗兰酮、氧化紫罗兰酮、茄酮等11种致香成分,应用遗传算法(GA)对筛选出的8种致香成分建立中部和下部烟叶支持向量机(SVM)分类判别模型.结果表明,中部和下部烟叶的SVM分类判别模型的建模、留一法及预报准确率分别为95.45%,89.39%和 81.25%.利用Fisher判别矢量方法考察了中部和下部烟叶的空间分布规律,分析出中部和下部烟叶致香成分中,巨豆三烯酮、β-紫罗兰酮、氧化紫罗兰酮差异显著. Eleven different aromatic components including megastigmatrienone,beta-Ionone,Ionone oxide and solanone from middle and lower tobacco leaves were determined successfully via high performance liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS) system.By using genetic algorithm(GA),8 aromatic components were selected to build a support vector machine(SVM) classification model for discriminating middle and lower tobacco leaves.The results showed that the accuracies of modeling,leave-one-out,and prediction were 95.45%,89.39% and 81.25%,respectively.The spatial distribution of middle and lower tobacco leaves was investigated by Fisher discriminant vector method,which showed that megastigmatrienone,beta-Ionone,and Ionone oxide were evidently different in the middle and lower tobaccos leaves.
作者 申玉姝 曹晓卫 于洁 沙云菲 岳宝华 SHEN Yushu;CAO Xiaowei;YU Jie;SHA Yunfei;YUE Baohua(School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China;College of Chemistry and Materials Science,Shanghai Normal University,Shanghai 200234,China;Technology Center,Shanghai Tobacco Group Co., Ltd.,Shanghai 200082,China)
出处 《上海师范大学学报(自然科学版)》 2019年第4期420-426,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金青年基金(21706156)
关键词 烟叶部位 致香成分 遗传算法(GA) 支持向量机(SVM) tobacco leaves stalk positions aromatic components genetic algorithm(GA) support vector machine(SVM)
  • 相关文献

参考文献17

二级参考文献151

共引文献71

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部