期刊文献+

稀疏卷积特征的实时目标跟踪

Sparse Convolutional Features for Real-time Object Tracking
下载PDF
导出
摘要 针对分层卷积相关滤波目标跟踪算法鲁棒性良好而实时性能较差问题,提出了基于单层稀疏卷积特征的实时目标跟踪算法.该方法选用单个卷积层的特征,并通过等间隔采样方法生成稀疏特征来提高跟踪的速度.然后采用调整类标函数带宽的策略来提高核相关滤波分类器性能,以解决卷积特征维度降低造成的算法鲁棒性下降问题,在OTB-2013标准数据集上测试算法.实验结果表明,该算法的平均距离精度为89.9%,平均跟踪速度为25.0帧/秒,比原分层卷积核相关滤波目标跟踪算法分别提高了0.9%和108.3%;与多尺度域适应的目标跟踪算法速度相比稍有降低,但平均距离精度提高3.8%,在目标发生遮挡、形变、光照变化、背景混乱等情况时具有很好的鲁棒性. A real-time object tracking algorithm based on single-layered convolutional features is proposed to improve the speed of hierarchical convolutional feature tracking. The new algorithm first selects single-layered convolutional features and then takes equal interval sampling method to generate sparse features,which lead to a considerable improvement on the tracking speed. Then the kernel width of Gaussian label function is adjusted to improve the performance of the correlation filter classifiter in order to solve its poor robustness caused by dimension reduction of convolutional features. Extensive experimental results on OTB-2013 benchmark dataset show that the mean distance precision of the proposed algorithm is 89. 9% and the speed is 25 frames per second,outperforming hierarchical convolutional features tracking by 0. 9% and108. 3% respectively. Compared with object tracking via multi-scale domain adaptation,the mean distance precision increased by 3. 8%,though its speed declines slightly. In the case of occlusion,deformation,illumination variation,background clusters,etc.,this new algorithm executes robust performances.
作者 邹建成 王润玲 车满强 熊昌镇 ZOU Jiancheng;WANG Runling;CHE Manqiang;XIONG Changzhen(Col.of Science,North China Univ.of Tech.,100144,Beijing,China;Beijing Key Laboratory of Urban Intelligent Control Technology,North China Univ.of Tech.,100144,Beijing,China)
出处 《北方工业大学学报》 2019年第2期1-8,共8页 Journal of North China University of Technology
基金 国家重点研发计划“城市轨道系统安全保障技术”(2017YFC0821102) 北方工业大学学生科技活动“基于卷积神经网络和相关滤波的实时跟踪算法研究”
关键词 目标跟踪 卷积神经网络 相关滤波 稀疏特征 object tracking convolutional neural network correlation filter sparse convolutional features
  • 相关文献

参考文献2

二级参考文献41

  • 1ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163. 被引量:1
  • 2AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072. 被引量:1
  • 3PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179. 被引量:1
  • 4VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72. 被引量:1
  • 5SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115. 被引量:1
  • 6COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575. 被引量:1
  • 7BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84. 被引量:1
  • 8HARITAOGLU I, HARWOOD D, DAVIS L. W4:real-time surveillance of people and their activities [ J ]. 1EEE Trans. Patt. Analy. Mach. Intell. ,2000,22(8) :809-830. 被引量:1
  • 9MORAVEC H. Visual mapping by a robot rover[ C ]. Proceedings of the International Joint Conference on Artificial Intel- ligence ( IJCAI ), San Francisco, USA, August 20,1979 : 598-600. 被引量:1
  • 10HARRIS C,STEPHENS M. A combined corner and edge detector[ C]. In 4th Alvey Vision Conference,August 31-Sep- tember 2,1988 : 147-151. 被引量:1

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部