期刊文献+

基于BP神经网络的机床热误差建模与分析 被引量:13

Modeling and Analysis of Machine Tool Thermal Error Based on BP Neural Network
下载PDF
导出
摘要 针对机床进给系统热误差,提出了一种复合预测方法。首先使用神经网络对丝杠热变形量进行建模,然后以多项式拟合法来求得平台轴向热误差y与丝杠实际热变形量x之间的关系,建立平台轴向热误差预测模型,称作"两步法"。两步法与BP神经网络直接预测平台轴向热误差的方法(直接法)分别对实验进行预测,将两方法预测结果与实测平台轴向热误差对比。结果表明,实验过程中行程发生变化时,直接法预测得到的热误差残差在-5.4~6.6μm间波动,两步法预测得到的热误差残差在-3.1~2.2μm内波动,两步法预测精度比直接法高了约126%,有较强的工程应用价值。 A composite prediction method is proposed for the thermal error of the machine feed system. Firstly, the neural network is used to model the thermal deformation of the screw. Then the polynomial fitting method is used to find the relationship between the platform axial thermal error y and the actual thermal deformation x of the lead screw. Establish a platform axial thermal error prediction model called "two-step method". Two-step method, and BP neural network method for directly predicting axial thermal error of platform(direct method), respectively predicting experiment. And the prediction results of the two methods are compare with measured values of axial thermal error of the platform. The results show that when the stroke changes during the experiment, the thermal error residual predicted by the direct method fluctuates between -5.4 ~ 6.6 μm, and the thermal error residual predicted by the two-step method fluctuates within -3.1~2.2 μm. The prediction accuracy of the two-step method is about 126% higher than the direct method and has a strong engineering application value.
作者 辛宗霈 冯显英 杜付鑫 李慧 李沛刚 XIN Zong-pei;FENG Xian-ying;DU Fu-xin;LI Hui;LI Pei-gang(School of Mechanical Engineering, Ministry of Education, Shandong University,Jinan 250061, China;Key Laboratory of Efficient Clean Machine Manufacturing, Ministry of Education, Shandong University,Jinan 250061, China)
出处 《组合机床与自动化加工技术》 北大核心 2019年第8期39-43,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(51375266) 国家自然科学基金青年项目(51705289) 山东省自然科学基金培养项目(ZR2017PEE005)
关键词 热误差 BP神经网络 多项式拟合 滚珠丝杠 预测 thermal error BP neural network polynomial fitting ball screw prediction
  • 相关文献

参考文献9

二级参考文献105

共引文献174

同被引文献96

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部