期刊文献+

噪声标注下的改进TSVM学习算法 被引量:2

Improved TSVM Learning Algorithm Under Noise Labeling
下载PDF
导出
摘要 深度学习的迅速发展需要大量有标记数据的支持,而实际数据中往往带有未知比例的噪声标记,会直接影响分类器的最终结果。针对数据集中错误标记的存在,提出了一种噪声标注下的TSVM改进算法,该方法利用聚类筛选出错分率较高的簇,通过交换错分率较高的两个簇的标签,减少TSVM算法中噪声标记的传递和累加,能够有效地提高标记准确率,增强TSVM分类器对不同比例噪声的鲁棒性。为了验证提出算法的有效性,通过在选取的UCI数据集上加入不同比例的噪声标签对算法进行了实验。实验结果表明,该算法在含有不同噪声标记比例的数据集上的鲁棒性均优于SVM和TSVM算法。 With the rapid development of deep learning, a large amount of labeled data is required. But the original data often has an unknown proportion of noise labels, which will directly affect the final result of the classifier. To deal with the problem of the existence of error labels in datasets, this paper proposes an improved TSVM algorithm adapted to noise labels data. This method uses clustering to filter clusters with higher error rate, and then exchanges the two clusters with higher error rate to reduce the transfer and accumulation of noise labels in the TSVM algorithm. The method can improve the accuracy effectively and enhance the robustness of the TSVM classifier in the data set with different proportions of noise. In order to verify the effectiveness of the proposed algorithm, experiments are performed by adding different proportions of noise tags to the selected UCI data set. Experimental results show that the robustness of proposed algorithm is better than SVM and TSVM in the datasets with different noise ratios.
作者 何丽 刘颖 韩克平 HE Li;LIU Ying;HAN Keping(School of Science and Technology, Tianjin University of Finance & Economics, Tianjin 300222, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第17期44-50,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61502331,No.1162600458) 天津市自然科学基金(No.15JCYBJC16000,No.16JCYBJC42000)
关键词 噪声标记 直推式支持向量机 聚类算法 鲁棒性 noisy label transductive support vector machines clustering algorithm robustness
  • 相关文献

参考文献2

二级参考文献66

  • 1易星.半监督学习若干问题的研究[D]清华大学,清华大学2004. 被引量:1
  • 2MARUYAMA K I,MARUYAMA M,HIDETOSHI M,etal.A method to make multiple hypotheses with high cu-mulative recognition rate using SVMs. Pattern Recognition . 2004 被引量:1
  • 3Vladimir N Vapnik.Statistical Learning Theory. . 1998 被引量:1
  • 4X J Zhu.Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison . 2005 被引量:1
  • 5Bruzzone, L,Chi, M,Marconcini, M.A novel transductive SVM for the semisupervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing . 2006 被引量:1
  • 6Vapnik VN.The Nature of Statistical Learning Theory. . 1995 被引量:1
  • 7Joachims T.Transductive inference for text classification using support vector machines. Proceedings of the 16th International Conference on Machine Learning . 1999 被引量:1
  • 8Chen YS,Wang GP,Dong SH.Learning with progressive transductive support vector machines. Pattern Recognition . 2003 被引量:1
  • 9Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans on Knowledge and Data Engineering, 2010,22(10):1345-1359. [doi: 10. 1109/TKDE.2009.191 ]. 被引量:1
  • 10Zhuang FZ, He Q, Shi ZZ. Survey on transfer learning research. Ruan Jian Xue Bao/Joumal of Software, 2015,26(l):26-39 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/4631.htm [doi: 10.13328/j.cnki.jos.004631]. 被引量:1

共引文献31

同被引文献26

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部