期刊文献+

基于神经元网络的热暴露对TC4钛合金拉伸性能影响预测 被引量:2

Prediction of Effect of Thermal Exposure on Tensile Properties of TC4 Titanium Alloy Based on Neural Network
下载PDF
导出
摘要 对TC4钛合金热处理态、200、400和500℃热暴露不同时间的拉伸性能进行了研究,并利用BP人工神经元网络方法建立了不同温度与时间热暴露下试样拉伸性能的预测模型。结果表明:大多数热暴露与拉伸测试条件下合金的强度与塑性性能并未发生严重的恶化,热暴露前后试样拉伸塑性的差值大多在±7.5%左右波动,断面收缩率最多降低了约13%。对所建立的BP人工神经网络模型预测精度的分析表明,当隐含层神经元个数为11时,该模型的预测效果最佳。该模型能够很好地预测TC4合金不同热暴露条件下拉伸性能的变化。 The tensile properties of TC4 titanium alloy with heat treatment at 200 ℃, 400 ℃ and 500 ℃ for different time were studied. The BP artificial neural network method was used to establish the prediction model of the tensile properties of the samples after heat exposure under different temperature and time. The results show that, the strength and plastic properties of the alloy do not deteriorate seriously under the conditions of thermal exposure and tensile test, and the difference of tensile plasticity before and after thermal exposure is mostly about ±7.5%. The shrinkage of the section is reduced by up to about 13%. The prediction accuracy of the BP artificial neural network model shows that, the optimal prediction accuracy is obtained when the nodal number of the hidden layer is no less than 11. Therefore, the established model can predict tensile properties of TC4 alloy very well under different thermal exposure conditions.
作者 周晓虎 楼美琪 张学敏 孙宇 张小航 王凯旋 赖运金 ZHOU Xiaohu;LOU Meiqi;ZHANG Xuemin;SUN Yu;ZHANG Xiaohang;WANG Kaixuan;LAI Yunjin(Xi'an Triangle Defense Co., Ltd., Xi'an 710089, China;NLEL for Special Titanium Alloy Material Manufacturing, Western Superconducting Technologies Co., Ltd., Xi'an 710018, China;School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China;National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China;Sino-Euro Materials Technologies of Xi’an Co., Ltd., Xi'an 710018, China)
出处 《热加工工艺》 北大核心 2019年第14期128-132,136,共6页 Hot Working Technology
基金 国家重点研发计划项目(2018YFB1106400) 陕西省重点研发计划项目(2018ZDXM-GY-132) 陕西省自然科学基金项目(2018JQ5190)
关键词 TC4钛合金 热暴露 力学性能 BP神经元网络 TC4 titanium alloy thermal exposure mechanical property BP neural network
  • 相关文献

参考文献3

二级参考文献27

  • 1邓小虎,张立文,何燕,裴继斌,卢愈.应变速率对金属动态再结晶影响的数值模拟[J].塑性工程学报,2007,14(2):24-29. 被引量:18
  • 2Lu M, Barrett J R, Kelly T J. In: Hemker K J, Dimiduk D M, Clem- ens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whit- tenberger J D eds., Structural Intermetallics 2001, Warrendale PA: TMS, 2001:225. 被引量:1
  • 3Tetsui T. Mater Sci Eng, 2002; A329-331 : 582. 被引量:1
  • 4Kim Y W. Mater Sci Eng, 1995; A192-193:519. 被引量:1
  • 5Huang S C. In: Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V eds., Structural lntermetallics 1993, Warrendale PA: TMS, 1993:299. 被引量:1
  • 6Dowling W E, Donlon W T. Scr Metall Mater, 1992; 27:1663. 被引量:1
  • 7Kelly T J, Austin C M, Fink P J, Schaeffer J. Scr Metall Mater,1994; 30:1105. 被引量:1
  • 8Lee D S, Stucke M A, Dimiduk D M. Mater Sci Eng, 1995; A192- 193:824. 被引量:1
  • 9Draper S L, Lerch B A, Locci I E, Shazly M, Prakash V. lntermetal- lics, 2005; 13:1014. 被引量:1
  • 10Pilone D, Felli F, Brotzu A. Intermetallics, 2013; 40:131. 被引量:1

共引文献21

同被引文献35

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部