期刊文献+

基于位置数据的用户多周期移动行为挖掘

Mining Users’ Multiple Periodic Moving Behaviors Based on Location Data
原文传递
导出
摘要 挖掘位置数据中的用户行为规律是大数据时代的研究热点之一.现有研究主要关注于用户在某时刻出现在某地点的行为,对于用户从一个地点移动到另一个地点的动态行为研究较为空缺.提出一种挖掘位置数据中用户移动行为的算法可以发现用户的多个周期移动行为,描述用户在时空上的移动规律.首先,利用离散傅里叶变换和自相关系数检测用户移动行为的周期,在这一过程中,利用Apriori性质减少计算复杂度;而后提出用户移动行为的生成模型,估计用户的移动行为概率矩阵,考虑到观测数据的稀疏性,采用带全局限制的动态时间规整距离对不同时间段的行为进行聚类以发现用户的多个周期移动行为.最后,我们选取某市公共自行车系统收集的位置数据进行实证分析,结果表明,新方法能有效地挖掘用户的多个周期移动行为,进一步地,通过归纳可以得到用户群体在周期移动行为上的主要特征. Mining the rule of users’ behaviors in location data is one of the research hotspots in the era of big data.Existing researches focus on the behavior of users appearing at a certain place at a certain moment,and the dynamic behavior research of users moving from one place to another is relatively empty.Proposing an algorithm to mine user’s moving behavior based on location data can discover users’ multiple periodic moving behaviors and describe users’ moving rules in time and space.Firstly,we use Discrete Fourier Transform and Autocorrelation Coefficient to detect the period of users’ moving behaviors.In this process,Apriori property is considered to reduce the computational complexity.Then,we propose a generative model and estimate the probability matrix of users’ moving behaviors.Taking into account the sparsity of users’ observation data,we cluster the behaviors of different time periods based on the dynamic time warping distance with global constraints to find the users’ multiple periodic moving behaviors.Finally,we select the location data collected by the public bicycle system in some city for empirical analysis.The results show that the new method can effectively mine users’ multiple periodic moving behaviors.Moreover,we summarize the main characteristics of the periodic moving behaviors for the users group.
作者 范一苇 吕晓玲 FAN Yi-wei;LU Xiao-ling(Center of Applied Statistics,Renmin University of China,Beijing 100872,China;Department of Statistics,Renmin University of China,Beijing 100872,China)
出处 《数学的实践与认识》 北大核心 2019年第14期181-190,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(61472475) 中央高校建设世界一流大学(学科)和特色发展引导专项资金
关键词 位置数据 移动行为 周期检测 聚类 动态时间规整 location data moving behavior period detection clustering dynamic time warping
  • 相关文献

参考文献2

二级参考文献35

  • 1刘经南.泛在测绘与泛在定位的概念与发展[J].数字通信世界,2011(S1):28-30. 被引量:31
  • 2Minakakis R.Evolution of mobile location-based services.Communication of the ACM,2003,46(12). 被引量:1
  • 3Quddus M A,Ochieng W Y,Noland R B.Current map-matching algorithms for transport applications:state-of-the art and future research directions.Transportation Research Part C,2007(15):312~328. 被引量:1
  • 4Ge Y,Xiong H,Liu C,et al.A taxi driving fraud detection system.Proceedings of the 11th IEEE International Conference on Data Mining(ICDM'11),Vancouver,Canada,2011:181~190. 被引量:1
  • 5Zhang D Q,Li N,Zhou Z H,et al.iBAT:detecting anomalous taxi trajectories from GPS traces.Proceedings of the 13th ACM International Conference on Ubiquitous Computing(UbiComp’11),Beijing,China,2011:99~108. 被引量:1
  • 6Chen C,Zhang D Q,Castro P S,et al.Real-time detection of anomalous taxi trajectories from GPS traces.Proceedings of the8th Annual International ICST Conference on Mobile and Ubiquitous System(MobiQuitous’11),Copenhagen,Denmark,2011:63~74. 被引量:1
  • 7Zhang J P,Wang F Y,Wang K F,et al.Data-driven intelligent transportation systems:a survey.IEEE Transations on Intelligent Transportation Systems,2011,12(4). 被引量:1
  • 8Cao L,Krumm J.From GPS traces to a routable road map.17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL GIS 2009),Seattle,WA,2009:3~12. 被引量:1
  • 9Chen Y H,Krumm J.Probabilistic modeling of traffic lanes from GPS traces.18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL GIS 2010),San Jose,CA,USA,2010. 被引量:1
  • 10Gonzalez H,Han J W,Li X L,et al.Adaptive fastest path computation on a road network:a traffic mining approach.VLDB 2007,Vienna,Austria,2007. 被引量:1

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部