期刊文献+

三维全局弱式无网格方法计算膨胀腔消声器声学模态

Acoustic Mode Analysis of Expansion Chamber Silencers by using 3D Global Weak-form Mesh-free Method
下载PDF
导出
摘要 应用三维全局弱式无网格方法求解膨胀腔消声器的声学模态,使用无网格径向基函数点插值法求解三维形函数,使用伽辽金加权残数法离散系统方程,最终求得三维声学模态。计算某简单膨胀腔消声器前23阶三维声学模态频率,并且与有限元计算结果对比,相对误差均在1%以内,验证了运用三维无网格方法计算声学模态的正确性。进而分析模态振型图,改进消声器结构,优化消声性能。 The application of the 3D global weak-form mesh-free method (MFM) to solve the 3D acoustic modes of the expansion chamber silencers is studied. This MFM method is based on the radial basis function point interpolation method (RPIM) for calculating the shape functions and the Galerkin weighted residual method for discretizing the system equation. The 3D acoustic modes of the first 23 orders of a simple expansion chamber are presented as an example to valid the computational accuracy of the proposed technique, and the relative errors are controlled within 1% by comparing with the FEM calculations. Additionally, the effects of the modes on the acoustic characteristics are investigated, and the structure of the silencer is improved to enhance the acoustic attenuation performance based on the 3D acoustic modes.
作者 刘凤景 方春慧 LIU Fengjing;FANG Chunhui(Yantai Automobile Engineering Professional College, Yantai 265500, Shandong China)
出处 《噪声与振动控制》 CSCD 2019年第4期239-243,共5页 Noise and Vibration Control
基金 国家自然科学基金资助项目(11504119) 山东省高等学校科技计划资助项目(J15LB59)
关键词 声学 消声器 声学模态 三维全局弱式无网格方法 径向基函数点插值法 伽辽金加权残数法 acoustics silencer acoustic mode 3D global weak-form mesh-free method radial basis function point interpolation method (RPIM) Galerkin weighted residual method
  • 相关文献

参考文献6

二级参考文献50

  • 1丁方允.三维Helmholtz方程Dirichlet问题的边界元法及其收敛性分析[J].兰州大学学报(自然科学版),1995,31(3):30-38. 被引量:9
  • 2LIUGR,GUYT.无网格法理论及程序设计[M].王建明,周学军,译.济南:山东大学出版社,2007. 被引量:7
  • 3Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions[J]. Int J Numet Meth Eng, 2002,54 (11) : 1623-1648. 被引量:1
  • 4Yagawa G, Yamada T. Free mesh method, a kind of meshless finite element method[J]. Cornput Mech, 1996,18:383-386. 被引量:1
  • 5Bales L,LASIECKA I.Continuous finite elements in space and time for the nonhomogeneous wave equation [J].Computers & Mathematics with Applications.1994,27 91–102. 被引量:1
  • 6Ihlenburg F,BABUŠKA I.Finite element solution of the helmholtz equation with high wave number.Part 1: the h-version of the FEM[J].Computers & Mathematics with Applications.1995,38: 38–37. 被引量:1
  • 7Richter G R.An explicit finite element method for the wave equation [J].Applied Numerical Mathematics.1994,16 (1–2): 65–80. 被引量:1
  • 8Jenkins E W,RIVIĔRE B,Wheeler M F.A priori error estimates for mixed finite element approximations of the acoustic wave equation [J],SIAM Journal on Numerical Analysis.2002,40 (5): 1698–1715. 被引量:1
  • 9Chen J T,Chen K H,Chyuan S W.Numerical experiments for acoustic modes of a square cavity using the dual boundary element method [J].Applied Acoustic.1999,57: 293-325. 被引量:1
  • 10Wenterod TC,Estorff O V.Dispersion analysis of the meshfree radial point interpolation method for the Helmholtz equation [J].International Journal for Numerical Methods in Engineering.2009,77: 1670-1689. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部