期刊文献+

Hermite径向基函数点插值配点法求解消声器横向模态 被引量:1

Numerical Analysis for Transversal Modals of Silencers Using Collocation Method with Hermite Radial Base-function and Point-interpolation
下载PDF
导出
摘要 为了避免划分网格,应用Hermite径向基函数点插值配点法(HRPIC)求解消声器横向本征方程,应用该方法计算的圆形和跑道圆横截面本征波数分别与解析结果和有限元计算结果吻合较好。进而分析影响域尺寸,问题域内计算点数目以及径向基函数的形状参数对本征波数计算误差的影响。结果表明,本征波数的计算误差在一定范围内会随着影响域尺寸和问题域内节点数目的增大而减小,但是不会一直减小,存在最优的数值,无量纲的形状参数直接影响本征波数的计算精度。最后比较Hermite径向基函数点插值配点法与有限元法的计算速度。 The collocation method with point interpolation and Hermite radial basis function(HRPIC) is employed in the numerical analysis of the 2-D eigen-equations of silencers.The eigen-wave numbers of the circular and oval cross sections are computed using this method and the results are found to agree well with those of the analytical method and general finite element method.Furthermore,the effects of size of the influence domain,number of computation nodes and the shape parameters of the radial base-functions on the calculation accuracy are evaluated.The results show that the relative error of the eigenvalue decreases with the increasing of the number of computational nodes and the size of influence domain in an effective range,but it increases instead beyond the range.So,there must be optimal values for the number of the computational nodes and the size of the influence domain.The dimensionless shape parameter directly affects the calculation accuracy of the eigenvalue.Finally,the computational speed of HRPIC method is compared with that of general FEM.
出处 《噪声与振动控制》 CSCD 2018年第1期36-41,共6页 Noise and Vibration Control
基金 国家自然科学基金资助项目(11504119)
关键词 声学 消声器 径向基函数点插值配点法 横向模态 acoustics silencer HRPIC method transversal modal
  • 相关文献

参考文献3

二级参考文献30

  • 1丁方允.三维Helmholtz方程Dirichlet问题的边界元法及其收敛性分析[J].兰州大学学报(自然科学版),1995,31(3):30-38. 被引量:9
  • 2刘桂荣,顾元通.无网格法理论及程序设计[M].济南:山东大学出版社,2007:60-99. 被引量:12
  • 3LIUGR,GUYT.无网格法理论及程序设计[M].王建明,周学军,译.济南:山东大学出版社,2007. 被引量:7
  • 4Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions[J]. Int J Numet Meth Eng, 2002,54 (11) : 1623-1648. 被引量:1
  • 5Yagawa G, Yamada T. Free mesh method, a kind of meshless finite element method[J]. Cornput Mech, 1996,18:383-386. 被引量:1
  • 6Bales L,LASIECKA I.Continuous finite elements in space and time for the nonhomogeneous wave equation [J].Computers & Mathematics with Applications.1994,27 91–102. 被引量:1
  • 7Ihlenburg F,BABUŠKA I.Finite element solution of the helmholtz equation with high wave number.Part 1: the h-version of the FEM[J].Computers & Mathematics with Applications.1995,38: 38–37. 被引量:1
  • 8Richter G R.An explicit finite element method for the wave equation [J].Applied Numerical Mathematics.1994,16 (1–2): 65–80. 被引量:1
  • 9Jenkins E W,RIVIĔRE B,Wheeler M F.A priori error estimates for mixed finite element approximations of the acoustic wave equation [J],SIAM Journal on Numerical Analysis.2002,40 (5): 1698–1715. 被引量:1
  • 10Chen J T,Chen K H,Chyuan S W.Numerical experiments for acoustic modes of a square cavity using the dual boundary element method [J].Applied Acoustic.1999,57: 293-325. 被引量:1

共引文献15

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部