期刊文献+

基于贝叶斯网络的楼层定位算法 被引量:4

Bayesian network-based floor localization algorithm
下载PDF
导出
摘要 针对在室内定位导航过程中单独依赖行人高度位移推测楼层位置误差较大的问题,提出一种基于贝叶斯网络的楼层定位算法。该算法先是利用扩展卡尔曼滤波(EKF)对惯性传感器数据和气压计数据进行融合,计算出行人垂直位移;然后利用误差补偿后的加速度积分特征对行人在楼梯中的转角进行检测;最后,利用贝叶斯网络融合行人行走高度和转角信息推测行人在某一层的概率,从而将行人定位在建筑物中最可能出现的楼层上。实验结果表明,与基于高度的楼层定位算法相比,所提算法的楼层定位准确率提升6.81%;与平台检测算法相比,该算法的楼层定位准确率提升14.51%;所提算法在总共1247次楼层变换实验中,楼层定位准确率达到99.36%。 In the process of indoor positioning and navigation,a Bayesian network-based floor localization algorithm was proposed for the problem of large error of floor localization when only the pedestrian height displacement considered.Firstly,Extended Kalman Filter (EKF) was adopted to calculate the vertical displacement of the pedestrian by fusing inertial sensor data and barometer data.Then,the acceleration integral features after error compensation was used to detect the corner when the pedestrian went upstairs or downstairs.Finally,Bayesian network was introduced to locate the pedestrian on the most likely floor based on the fusion of walking height and corner information.Experimental results show that,compared with the floor localization algorithm based on height displacement,the proposed algorithm has improved the accuracy of floor localization by 6.81%;and compared with the detection algorithm based on platform,the proposed algorithm has improved the accuracy of floor localization by 14.51%.In addition,the proposed algorithm achieves the accuracy of floor localization by 99.36% in the total 1 247 times floor changing experiments.
作者 张榜 朱金鑫 徐正蓺 刘盼 魏建明 ZHANG Bang;ZHU Jinxin;XU Zhengyi;LIU Pan;WEI Jianming(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《计算机应用》 CSCD 北大核心 2019年第8期2468-2474,共7页 journal of Computer Applications
基金 国家重点研发计划项目(2016YFC0801505) 上海市青年科技英才扬帆计划项目(18YF1425600)~~
关键词 室内定位 楼层定位 贝叶斯网络 扩展卡尔曼滤波 转角检测 indoor positioning floor localization Bayesian network Extended Kalman Filter (EKF) corner detection
  • 相关文献

参考文献5

二级参考文献39

  • 1陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 2霍立业.气压测高的理论依据和数学模型[J].测绘科技,1997(2):56-60. 被引量:3
  • 3张正勇,梅顺良.无线传感器网络节点自定位技术[J].计算机工程,2007,33(17):4-6. 被引量:10
  • 4陈祠,牟楠,张晨,等基于主成分分析的室内指纹定位模型[J].软件学报,2013,24(s1):98-107. 被引量:5
  • 5Chung J,Donahoe M,Schmandt C,et al.Indoor Location Sensing Using Geo-magnetism[C]//Proceedings of the9th International Conference on Mobile Systems,Applications,and Services.New York,USA:ACM Press,2011:141-154. 被引量:1
  • 6Chan C L,Baciu G,Mak S C.Using a Cell-based WLAN Infrastructure Design for Resource-effective and Accurate Positioning[J].IEEE Journal of Communications Software and Systems,2009,5(4):117-127. 被引量:1
  • 7Honkavirta V,Perala T,Ali-Loytty S,et al.A Comparative Survey of WLAN Location Fingerprinting Methods[C]//Proceedings of the6th Workshop on Positioning,Navigation and Communication.Washington D.C.,USA:IEEE Press,2009:243-251. 被引量:1
  • 8Lin T H,Ng I H,Lau S Y,et al.Impact of Beacon Packet Losses to RSSI-signature-based Indoor Localization Sensor Networks[C]//Proceedings of the10th International Conference on Mobile Data Management.Washington D.C.,USA:IEEE Computer Society,2009:389-390. 被引量:1
  • 9Roshanaei M,Maleki M.Dynamic-KNN:A Novel Locating Method in WLAN Based on Angle of Arrival[C]//Proceedings of IEEE Symposium on Industrial Electronics&Applications.Washington D.C.,USA:IEEE Press,2009:722-726. 被引量:1
  • 10Rahman M S,Park Y,Kim K D.Localization of Wireless Sensor Network Using Artificial Neural Network[C]//Proceedings of the9th International Symposium on Communications and Information Technology.Washington D.C.,USA:IEEE Press,2009:639-642. 被引量:1

共引文献52

同被引文献26

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部