期刊文献+

基于雾天图像退化模型的自适应参数优化的去雾算法 被引量:5

De-fogging Algorithm Based on Adaptive Parameter Optimization for Foggy Image Degradation Model
下载PDF
导出
摘要 针对单幅雾霾图像中包含有大面积浓雾、高亮以及白色物体等,而导致无法清晰识别的问题,基于雾天退化模型,提出了一种改进暗通道和运用灰度开运算求解环境光值相结合的去雾算法。首先根据暗通道先验理论运用图像阈值分割出暗原色区域和明原色区域,并将暗原色区域与明原色区域相结合以求得更加精准的原始透射率;然后采用引导滤波算法细化原始透射率;并通过灰度开运算对环境光值进行区间估计,提高了环境光值的精准性和鲁棒性。使得该算法适用于暗通道去雾效果不好的浓雾高亮区域,去雾后的图像更加真实自然,边缘细节信息更加丰富,有效去除了Halo效应;同时也有效地解决了单幅图片去雾后图片偏暗,图片视觉效果不好等问题。与经典去雾算法作比较,验证在图像的对比度、失真度、细节信息和边缘保持等方面都优于其他算法。 For a single smog image,there are some problems such as large area of thick fog,high brightness,and white objects,based on the foggy day degradation model,a defogging algorithm is proposed to improve the dark channel and solve the ambient light value by using the gray-scale open operation.Firstly,according to the dark channel prior theory,the image threshold is used to segment the dark primary color region and the bright primary color region.And the dark primary color region and the bright primary color region are combined to obtain a more accurate original transmittance.Then,the guided filter algorithm is used to refine the original transmittance,And the interval of the ambient light value is estimated by the gray-scale operation to improve the accuracy and robustness of ambient light values.The algorithm suitable was maken for dense fog highlighting area with bad dark channel defogging effect.The image after defogging is more real and natural,and the edge details are more abundant,effectively removing the Halo effect.At the same time,it also effectively solves the problem that the picture is dark after defogging a single picture,and the visual effect of the picture is not good.Comparing this algorithm with the classic defogging algorithm,it also directly proves that the processed image is superior to other algorithms in terms of contrast,distortion,detail and edge retention.
作者 陈本豪 高涛 卢玮 王翠翠 李琨 CHEN Ben-hao;GAO Tao;LU Wei;WANG Cui-cui;LI Kun(School of Information Engineering,Chang an University,Xi'an 710072,China)
出处 《科学技术与工程》 北大核心 2019年第21期219-227,共9页 Science Technology and Engineering
基金 国家自然科学基金(61302150) 中央高校基本科研业务费专项资金(310833160212)资助
关键词 暗明原色先验 灰度开运算 环境光值 图像去雾 dark and primitive primary color grayscale operation ambient light value image defogging
  • 相关文献

参考文献12

二级参考文献150

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254. 被引量:1
  • 3Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193. 被引量:1
  • 4Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. 被引量:1
  • 5Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332. 被引量:1
  • 6Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525. 被引量:1
  • 7Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 8Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991. 被引量:1
  • 9Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179. 被引量:1
  • 10Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467. 被引量:1

共引文献402

同被引文献33

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部