期刊文献+

航拍降质图像的去雾处理 被引量:26

Haze removal for aerial degraded images
下载PDF
导出
摘要 针对有雾天气下无人机航拍视觉系统的能见度低,航拍图像对比度和色彩保真度差等问题,基于暗原色先验规律以及雾图的物理模型提出了一种雾天降质图像去雾处理技术。从图像复原和增强两个角度出发,分别建立了户外图像全局去雾和对比度自适应调整的最优化模型,从而能够直接复原得到高质量的去除雾干扰的图像并且估算出雾的浓度。对一系列户外带雾图像的分组实验表明,该方法可以快速有效地提高带雾图像的对比度和色彩清晰度,获得满意的视觉效果。另外,该方法克服了Kai ming He方法处理时间过长的缺陷,平均处理时间仅为原方法的10%左右,显著缩短了运算时间,为在工程项目中实现图像的实时去雾处理提供了理论依据。 For aerial images with poor contrast and color fidelity due to foggy and hazy weathers,this paper proposes a technique of haze removal for aerial degraded images based on the dark-channel prior and the physical model to improve the visibility of vision system in an Unmanned Aerial Vehicle.From the viewpoints of image restoration and image enhancement,the optimized models of global haze removal and self-adapting contract extending are established,respectively.Using the method,a high quality haze-free image can be recovered and the thickness of the haze can be also established.The experimental results on a variety of outdoor haze images demonstrate that it can enhance the contrast and color definition of hazy degraded images fast and efficiently and can achieve satisfactory visual effects.Moreover,the method overcomes the Kaiming He's drawback of more time consuming,and the aver-age processing time is 10% that of the traditional method.It provides a theoretical reference for the real-time haze removal processing in engineering projects.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第7期1659-1668,共10页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2008AA121803) 国家973重点基础研究发展规划资助项目(No.2009CB72400603B)
关键词 航拍图像 图像复原 图像增强 去雾 暗原色先验 aerial image image restoration image enhancement haze removal dark-channel prior
  • 相关文献

参考文献17

  • 1刘瑞剑..低能见度条件下图像清晰化处理研究[D].中北大学,2008:
  • 2KOPF J,NEUBERT B,CHEN B, et al.. Deep photo: Model-based photograph enhancement and viewing [J]. ACMTransactions on Graphics, SIC-GRAPH, Cali- fornia, USA, 2008, 5:1-10. 被引量:1
  • 3NARASIMHAN S G,NAYAR S K. Chromatic frame- work for vision in bad weather[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2000, 1~598-605. 被引量:1
  • 4NARASIMHAN S G,NAYAR S K. Contrast res- toration of weather degraded images [J]. Proceed- ings of IEEE Transactions on Pattern Analysis and Machine Intelligence, Berlin, Germany, 2003, 7: 713-724. 被引量:1
  • 5SHWARTZ S,NAMER E,SCHECHNER Y Y. Blind haze sep-araion[C]. Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition, Beijing China, 1:1984-1991,. 被引量:1
  • 6TAN R. Visibility in bad weather from a single im- age[C]. Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition, Alaska, USA, 2008;1-8. 被引量:1
  • 7FATAL R. Single image dehazing[J]. ACM Trans- actions on Graphics, SIC, GRAPH , 2008,27(3) : 1- 9. 被引量:1
  • 8TAREL J P. Fast visibility restoration from a single color or gray level image[C]. Proceedings of IEEE Conference on International Conference on Com- puter Vision, Kyoto, Japan, 2009~20-28. 被引量:1
  • 9HE K, SUN J, TANG X O. Single image haze re- moval using dark channel prior[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009 : 1956-1963. 被引量:1
  • 10杨靖宇,张永生,邹晓亮,董广军.利用暗原色先验知识实现航空影像快速去雾[J].武汉大学学报(信息科学版),2010,35(11):1292-1295. 被引量:30

二级参考文献41

共引文献81

同被引文献220

引证文献26

二级引证文献319

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部