期刊文献+

超临界法石墨烯的制备及其水性导电油墨的性能 被引量:7

Graphene preparation by supercritical method and properties behind water-based conductive ink
下载PDF
导出
摘要 为提高石墨烯的电导率,采用超声辅助超临界乙醇流体的方法,在高温高压条件下通过插层处理天然鳞片石墨剥离制备出石墨烯,研究工艺参数对石墨烯产率的影响。利用XRD表征石墨烯结构,利用AFM、SEM、TEM分析石墨烯的表面形貌及厚度。结果表明:在280℃、20MPa、反应1h条件下,该方法能够快速制备出尺寸约20μm、厚度4.2nm、层数小于六层的石墨烯;以丙烯酸树脂为黏结剂制备的水性导电油墨,当石墨烯质量占水性导电油墨总质量的35%时,其方块电阻为9Ω。该研究为石墨烯量产提供了可行途径。 This paper is concerned with a study designed to improve the conductivity of grapheme.The study involves preparing graphene by employing ultrasonic assisted supercritical ethanol fluid and exfoliating natural flake graphite under high temperature and pressure and thereby investigating the effect of process parameters on the yield of grapheme;and characterizing the structural characteristics of graphene by XRD and were analyzing the surface morphology and thickness of graphene by AFM,SEM and TEM.The results show that given reaction conditions of 280℃,20 MPa and 1 h,the method enables the quicker preparation of grapheme with the particle size of approximately 20μm,the thickness of 4.2 nm,and the layer number of less than 6 layers.Water-based conductive ink prepared using acrylic resin as binder has the square resistance value of 9Ωin the presence of 35%of the graphene mass in ink total mass of water-based conductive ink.
作者 王振廷 张永柯 尹吉勇 Wang Zhenting;Zhang Yongke;Yin Jiyong(School of Materials Science & Engineering,Heilongjiang University of Science & Technology,Harbin 150022,China)
出处 《黑龙江科技大学学报》 CAS 2019年第4期414-418,共5页 Journal of Heilongjiang University of Science And Technology
基金 哈尔滨市应用技术研究与开发项目(2015RQXXJ004)
关键词 石墨烯 水性导电油墨 超临界流体 插层 剥离 grapheme water-based conductive ink supercritical fluid inserted layer stripping
  • 相关文献

参考文献7

二级参考文献28

  • 1Novoselov,K.S.,A.K.Geim,S.V.Morozov,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669. 被引量:1
  • 2Novoselov,K.S.,Jiang D.,F.Schedin.Two-dimensional Atomic Crystals[J].PNAS,2005,102:10451-10453. 被引量:1
  • 3Geim,A.K.,K.S.N ovoselov.The Rise of Graphene[J].Nature Materials,2007,6:183-191. 被引量:1
  • 4Schedin,F.,A.K.Geim,S.V.Morozov,et al.Detection of Individual Gas Molecules Adsorbed on Graphene[J].Nature Materials,2007,6:652-655. 被引量:1
  • 5Stankovich,S.,D.A.Dikin,G.H.B.Dommett,et al.Graphene Based Composite Materials[J].Nature,2006,442:282-286. 被引量:1
  • 6LI X.L.,ZHANG G.Y.,BAI X.D.,et al.Highly Conducting Graphene Sheets and Langmuir-Blodgett Films[J].Nature Nanotechnology,2008,3:538 -542. 被引量:1
  • 7Berger,C.,SONG Z.M.,LI X.B.,et al.Electron Confinement and Coherence in Patterned Epitaxial Graphene[J].Science,2006,312:1191-1196. 被引量:1
  • 8Kim,K.S.,ZHAO Y.,JANG H.,et al.Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes[J].Nature,2007,457:706-710. 被引量:1
  • 9NI Z.H.,WANG H.M.,J.Kasim,et al.Graphene Thickness Determination Using Reflection and Contrast Spectroscopy[J].Nano Letters,2007,(1):2758-2763. 被引量:1
  • 10Nemes-Incze,P.,Z.Osvath,K.Kamaras,et al.Anomalies in Thickness Measurements of Grapheme and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy[J].Carbon,2008,46:1435 -1442. 被引量:1

共引文献53

同被引文献47

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部