期刊文献+

基于深度强化学习的移动机器人导航控制 被引量:7

Mobile robot navigation control based on deep reinforcement learning
下载PDF
导出
摘要 针对移动机器人在未知环境下的无图导航问题,本文提出了一种基于深度强化学习的端到端的控制方法。机器人需要在没有地图的情况下,仅仅依靠视觉传感器的RGB图像以及与目标之间的相对位置作为输入,来完成导航任务并避开沿途的障碍物。在任意构建的仿真环境中,基于学习策略的机器人可以快速适应陌生场景最终到达目标位置,并且不需要任何人为标记。实验表明,这种端到端的控制策略可以实现仿真环境中的导航任务,且与普通离散控制的深度强化学习的方法相比,机器人学习导航策略的平均收敛时间降低了75%。 Collision-free exploration in an unknown environment is a core function of mobile robots. This paper proposes an end-to-end control method based on deep reinforcement learning. The robot needs to rely solely on the RGB image of the vision sensor and the relative position to the target as input to complete the navigation task and avoid obstacles. In an arbitrarily constructed simulation environment,a learning strategy- based robot can quickly adapt to unfamiliar scenes and eventually reach the target location without any artifacts. Experiments show that this end- to- end control strategy can achieve navigation tasks in the simulation environment,and the average convergence time of the robot learning navigation strategy is reduced by 75% compared with the classical deep reinforcement learning method.
作者 陈杰 程胜 石林 CHEN Jie;CHENG Sheng;SHI Lin(The China Manned Space Engineering of Ice,Beijing 100083,China;China Aerospace Science and Technology Corporation,Beijing 100094,China;School of Computer Science,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《电子设计工程》 2019年第15期61-65,共5页 Electronic Design Engineering
关键词 自主导航 深度强化学习 自动控制 移动机器人 autonomous navigation deep reinforcement learning automatic control mobile robot
  • 相关文献

参考文献4

二级参考文献41

  • 1HAYKINS.神经网络与机器学习[M].3版.申富饶,徐烨,郑俊,译.北京:机械工业出版社,2011:237. 被引量:2
  • 2ALEX K,ILYA S,HINTON G E.ImageNet classification with deep convolutional neural networks[EB/OL].[2015-02-10].http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. 被引量:1
  • 3DAN C,UELI M,JURGEN S.Multi-column deep neural networks for image classification[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2012:3642-3649. 被引量:1
  • 4KAVUKCUOGLU K,SERMANET P,BOUREAU Y,et al.Learning convolutional feature hierarchies for visual recognition[EB/OL].[2015-02-10].http://cs.nyu.edu/-ylan/files/publi/koray-nips-10.pdf. 被引量:1
  • 5KAVUKCUOGLU K,RABZATO M,FERGUS R,et al.Learning invariant features through topographic filter maps[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:1605-1612. 被引量:1
  • 6COATES A,LEE H,NG A Y.An analysis of single-layer networks in unsupervised feature learning[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.Piscataway,NJ:IEEE,2011:215-223. 被引量:1
  • 7ZEILER M D,FERGUS,R.Visualizing and understanding convolutional neural networks[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision.Berlin:Springer,2014:818-833. 被引量:1
  • 8BALDI P,LU ZHIQIN.Complex-valued autoencoders[J].Neural Networks,2012,33:136-147. 被引量:1
  • 9LECUN Y,BOTTOU L,BENGIO Y.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. 被引量:1
  • 10DERMANET P,LECUN Y.Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of the 2011 International Joint Conference on Neural Networks.Piscataway,NJ:IEEE,2011:2809-2813. 被引量:1

共引文献71

同被引文献83

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部